Everyday Mathematics Student Math Journal 2

The University of Chicago School Mathematics Project

UCSMP Elementary Materials Component
Max Bell, Director
Authors
Max Bell
John Bretzlauf
Amy Dillard
Robert Hartfield
Andy Isaacs
James McBride, Director
Kathleen Pitvorec
Peter Saecker
Robert Balfanz*
William Carroll*

Technical Art
Diana Barrie
*First Edition only
Photo Credits
Tony Freeman/Photo Edit p. 342, Cover: Bill Burlingham/Photography
Photo Collage: Herman Adler Design Group
Contributors
Tammy Belgrade, Diana Carry, Debra Dawson, Kevin Dorken, James Flanders, Laurel Hallman, Ann Hemwall, Elizabeth Homewood, Linda Klaric, Lee Kornhauser, Judy Korshak-Samuels, Deborah Arron Leslie, Joseph C. Liptak, Sharon McHugh, Janet M. Meyers, Susan Mieli, Donna Nowatzki, Mary O’Boyle, Julie Olson, William D. Pattison, Denise Porter, Loretta Rice, Diana Rivas, Michelle Schiminsky, Sheila Sconiers, Kevin J. Smith, Theresa Sparlin, Laura Sunseri, Kim Van Haitsma, John Wilson, Mary Wilson, Carl Zmola, Theresa Zmola

This material is based upon work supported by the National Science Foundation under Grant No. ESI-9252984. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Copyright © 2004 by Wright Group/McGraw-Hill.
All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher, unless otherwise indicated.

Send all inquiries to:
Wright Group/McGraw-Hill
P.O. Box 812960

Chicago, IL 60681
Printed in the United States of America.
ISBN 0-07-600036-2
111213 DBH 100908070605

Contents

Unit 7: Exponents and Negative Numbers

Exponents 211
Addition and Subtraction of Fractions 213
Math Boxes 7.1 214
Guides for Powers of 10 215
Negative Powers of 10 216
Math Boxes 7.2 217
Scientific Notation 218
Math Boxes 7.3 219
History of the Earth 220
Math Boxes 7.4 223
Parentheses and Number Stories 224
Order of Operations 226
American Tour: Inequalities 227
Math Boxes 7.5 228
Positive and Negative Numbers on a Number Line 229
Comparing and Ordering Numbers 230
Review and Practice with Parentheses 231
Math Boxes 7.6 232
500 233
Using Counters to Show an Account Balance 234
Addition of Positive and Negative Numbers 235
Math Boxes 7.7 236
Finding Balances 237
Adding and Subtracting Numbers 238
Subtraction Problems 240
Math Boxes 7.8 241
Addition and Subtraction on a Slide Rule 242
Using a Ruler 243
Math Boxes 7.9 244
Entering Negative Numbers on a Calculator 245
Addition and Subtraction Using a Calculator 246
Plotting Ordered Pairs 247
Math Boxes 7.10 248
Time to Reflect 249
Math Boxes 7.11 250

Unit 8: Fractions and Ratios

Comparing Fractions
 251

Fraction Review 252
Math Boxes 8.1 253
Addition of Fractions 254
Addition of Mixed Numbers 255
Reading a Ruler 256
Math Boxes 8.2 257
Subtraction of Mixed Numbers 258
Addition and Subtraction Patterns 259
Math Boxes 8.3 260
Calculator Key Investigation 261
Finding a Fraction of a Number 262
Math Boxes 8.4 263
Math Boxes 8.5 264
Number-Line Models 265
Paper-Folding Problems 266
Math Boxes 8.6 268
Fraction Multiplication 269
An Area Model for Fraction Multiplication 270
An Algorithm for Fraction Multiplication 271
Place-Value Practice 272
A Blast from the Past 273
Area Models 274
Using the Fraction Multiplication Algorithm 275
Math Boxes 8.7 276
Review Converting Fractions to Mixed Numbers 277
Multiplication of Fractions and Mixed Numbers 278
Track Records on the Moon and the Planets 279
Math Boxes 8.8 280
Finding a Percent of a Number 281
Calculating a Discount 282
Math Boxes 8.9 283
Unit Fractions and Unit Percents 284
Using a Unit Fraction or a Unit Percent to Find the Whole 285
Math Boxes 8.10 287
Math Boxes 8.11 288
Class Survey 289
Rural and Urban Populations 290
Division 292
Common Denominator Division 293
Math Boxes 8.12 294
Time to Reflect 295
Math Boxes 8.13 296

Unit 9: Coordinates, Area, Volume, and Capacity

Plotting a Turtle
297

Hidden Treasure Gameboards 298
Matching Graphs to Number Stories 299
Math Boxes 9.1 300
Plotting a Map 301
Sailboat Graphs 302
Place-Value Puzzles 304
Math Boxes 9.2 305
More Sailboat Graphs 306
Advanced Hidden Treasure Gameboards 308Math Boxes 9.3
Areas of Rectangles309
Area Problems 311
Review of 2-Dimensional Figures 312
Math Boxes 9.4 313
Personal References 314
Finding Areas of Nonrectangular Figures 315
Areas of Triangles and Parallelograms 316
Math Boxes 9.5 317
The Rectangle Method 318
Finding Areas of Triangles and Parallelograms 319
Defining Base and Height 320
Math Boxes 9.6 321
Earth's Water Surface 322
Estimation Challenge: Area 323
The Four-4s Problem 324
Math Boxes 9.7 327
Rectangular Prisms 328
Volumes of Rectangular Prisms 329
A Mental Calculation Strategy 330
Math Boxes 9.8 331
Volume of Prisms 332
Math Boxes 9.9 334
Units of Volume and Capacity 335
Open Boxes 337
Math Boxes 9.10 338
Time to Reflect 339
Math Boxes 9.11 340

Unit 10: Algebra Concepts and Skills

Math Boxes 10.1 341
Pan-Balance Problems 342
More Pan-Balance Problems 344
Represent Number Stories 347
Math Boxes 10.2 348
Math Boxes 10.3 349
Algebraic Expressions 350
"What's My Rule?" 352
Multiplication and Division Practice 353
Speed and Distance 354
Representing Rates 356
Area and Volume Review 358
Math Boxes 10.4 359
Predicting When Old Faithful Will Erupt Next 360
More Pan-Balance Practice 361
Math Boxes 10.5 362
Math Boxes 10.6 363
Rules, Tables, and Graphs 364
Running and Walking Graph 366
Reading Graphs 367
Mystery Graphs 368
Math Boxes 10.7 369
A Problem from the National Assessment 370
Ratio of Circumference to Diameter 371
Math Boxes 10.8 372
Measuring the Area of a Circle 373
Areas of Circles 374
A Formula for the Area of a Circle 375
Fraction and Percent Multiplication 376
Math Boxes 10.9 377
Time to Reflect 378
Math Boxes 10.10 379

Unit 11: Volume

Geometric Solids $\mathbf{3 8 0}$
More Circumference and Area Problems 381
Math Boxes $11.1 \mathbf{3 8 2}$
Math Boxes 11.2383
Comparing Geometric Solids 384
Volume of Cylinders $\mathbf{3 8 6}$
Volume of Cylinders and Prisms $\mathbf{3 8 7}$
Math Boxes 11.3
Volume of Pyramids and Cones 389
Review of Area 390
Math Boxes 11.4391
How to Calibrate a Bottle 392
Finding Volume by a Displacement Method 393
Fraction Review 394
Math Boxes 11.5395
Capacity and Weight 396
Math Boxes 11.6398
Math Boxes 11.7 399
Surface Area 400
Time to Reflect 402
Math Boxes 11.8403

Unit 12: Probability, Ratios, and Rates

Math Boxes 12.1 404
Factors 405
Factor Trees and Greatest Common Factors 406
Factor Trees and Least Common Multiples 408
Rate Number Stories 409
Probability 410
The Multiplication Counting Principle and Tree Diagrams 411
Tree Diagrams and Probability 412
Math Boxes 12.2 414
Ratios 415
Using Ratios to Examine a Trend 416
10 Times 417
Math Boxes 12.3 418
Comparing Parts to Wholes 419
Ratio Number Stories 420
Math Boxes 12.4 421
More Ratio Number Stories 422
Volume Review 424
Math Boxes 12.5 425
The Heart 426
Math Boxes 12.6 427
Exercise and Your Heart 428
My Heart-Rate Profile 429
My Class's Heart-Rate Profile 430
Math Boxes 12.7 431
Review of Ratios 432
Math Boxes 12.8 433
The Heart Pump 434
American Tour: End-of-Year Projects 436
Math Boxes 12.9 439
Time to Reflect 440
Math Boxes 12.10 441
Reference Pages 442
Cardstock 5: Polygon Capture Property Cards Activity Sheet 5Cardstock 6: Slide RuleActivity Sheet 6
Cardstock 7: Rectangular Prism Patterns Activity Sheet 7Cardstock 8: Square Tiles
Activity Sheet 8

Exponents

Math Message

Which is correct, $4^{3}=12$ or $4^{3}=64$? Explain your answer.

Exponential Notation

In exponential notation, the exponent tells how many times the base is used as a factor. For example, $4^{3}=4 * 4 * 4=64$. The base is 4 and the exponent is 3 .

1. Complete the table.

Exponential Notation	Base	Exponent	Repeated Factors	Product
5^{4}	5	4	$5 * 5 * 5 * 5$	625
	2	3		
			$6 * 6 * 6 * 6$	
			$9 * 9$	
			$1 * 1 * 1 * 1 * 1 * 1 * 1$	
	2			32

The Powers Key \wedge

2. Use your calculator to enter the keystrokes shown in the first column of the table.
Record the calculator display in the second column.
Study your results. What is the function of the \wedge key?
\qquad

Calculator Entry	Calculator Display
$4 \triangle 3$ Enneol	
$2 \triangle 4$ Enter	
$3 \triangle 2$ Enter	
1 (Endor	
$5 \triangle 3$ Enmer	

Exponents (cont.)

Each problem below has a mistake. Find the mistake and tell what it is.
Then solve the problem.
3. $5^{2}=5 * 2=10$

Mistake: \qquad
\qquad
Correct solution: \qquad
4. $6^{3}=3 * 3 * 3 * 3 * 3 * 3=729$

Mistake: \qquad
\qquad
Correct solution: \qquad
5. $10^{4}=10+10+10+10=40$

Mistake: \qquad
\qquad

Correct solution: \qquad

Use your calculator to write the following numbers in standard notation.
6. $7 * 7 * 7 * 7=\square$
8. $6^{9}=$ \qquad
10. $2^{12}=$ \qquad
7. $15 * 15 * 15 * 15=$ \qquad

Write $<,>$, or $=$.
12. 10^{2} \qquad 2^{10}
13. 3^{4} \qquad 9^{2}
14. 1^{2} 1^{5}
15. 5^{4} \qquad 500
Reminder:
$>$ means is greater than.
$<$ means is less than.
9. $5^{8}=$ \qquad
11. 4 to the fifth power $=$
\qquad

Addition and Subtraction of Fractions

Find a common denominator. Then add or subtract.

1. $\frac{9}{10}-\frac{1}{5}=$ \qquad
2. $\frac{7}{12}+\frac{4}{5}=$ \qquad
3. $\frac{1}{2}$

$$
-\frac{4}{9}
$$

2. $\frac{5}{9}-\frac{2}{5}=$ \qquad
3. $\frac{6}{15}-\frac{1}{10}=$ \qquad
4. $\quad \frac{3}{7}$
$\begin{array}{r}+\frac{5}{8} \\ \hline\end{array}$

Solve.
7. Regina is baking two different kinds of chocolate-chip cookies. One recipe calls for $\frac{1}{4}$ cup of chocolate chips. The other calls for $\frac{3}{4}$ cup of chocolate chips.
How many cups of chocolate chips does she need in all?
Write a number model: \qquad
Solution: \qquad cup
8. Roger found a long piece of heavy rope that was $24 \frac{3}{4}$ feet long. It was a perfect rope for making jump ropes. If each jump rope is $8 \frac{1}{4}$ feet long, how many can he make?
\qquad jump ropes
Explain how you found your answer. \qquad
\qquad
\qquad

Math Boxes 7.1

1. Rewrite each fraction pair with common denominators.
a. $\frac{1}{3}$ and $\frac{1}{2}$
b. $\frac{3}{4}$ and $\frac{2}{5}$
c. $\frac{2}{8}$ and $\frac{9}{12}$ \qquad
2. Complete the table.

Fraction	Decimal	Percent
$\frac{7}{10}$		
$\frac{3}{8}$		
	$0 . \overline{3}$	

3. Amanda collects dobsonflies (a pretty scary-looking creature, by all accounts). Below are the lengths, in millimeters, for the flies in her collection.
$95,107,119,103,102,91,115,120,111,114,115,107,110,107,98,112$
a. Circle the stem-and-leaf plot below that represents this data.

Stems (100s and 10s)	Leaves (1s)	Stems (100s and 10s)	Leaves (1s)	Stems (100s and 10s)	Leaves (1s)
9	158	9	158	9	15888
10	23777	10	237	10	23777
11	0124559	11	012459	11	0124555
12	0	12	0	12	0

b. Find the following landmarks for the data.

Median: \qquad Minimum: \qquad Range: \qquad Mode(s):

4. Divide. Show your work.
a. $843 \div 28 \rightarrow$ \qquad b. $279 \div 17 \rightarrow$

Guides for Powers of 10

Study the place-value chart below.

	Millions			Thousands				Ones		
Billions	Hundred- millions	Ten- millions	Millions	Hundred- thousands	Ten- thousands	Thousands	Hundreds	Tens	Ones	
10^{9}	10^{8}	10^{7}	10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}	

In our place-value system, the powers of 10 are grouped into sets of three: ones, thousands, millions, billions, and so on. These groupings are helpful for working with large numbers. When we write large numbers, we separate these groups of three with commas.

We have prefixes for these groupings and for other important powers of 10 . You know some of these prefixes from your work with the metric system. For example, the prefix kilo- in kilometer identifies a kilometer as 1,000 meters. It is helpful to memorize the exponential notation and the prefixes for one thousand, one million, one billion, and one trillion.

Use the place-value chart for large numbers and the prefixes chart to complete the following statements.

	Prefixes
tera-	trillion $\left(10^{12}\right)$
giga-	billion $\left(10^{9}\right)$
mega-	million $\left(10^{6}\right)$
kilo-	thousand $\left(10^{3}\right)$
hecto-	hundred $\left(10^{2}\right)$
deca-	ten $\left(10^{1}\right)$
uni-	one $\left(10^{0}\right)$
deci-	tenth $\left(10^{-1}\right)$
centi-	hundredth $\left(10^{-2}\right)$
milli-	thousandth $\left(10^{-3}\right)$
micro-	millionth $\left(10^{-6}\right)$
nano-	billionth $\left(10^{-9}\right)$

Example

1 kilogram equals $10 \square$ or one thousand grams.

1. The distance from Chicago to New Orleans is about 10^{3} or one \qquad miles.
2. A millionaire has at least $10 \square$ dollars.
3. A computer with 1 megabyte of RAM memory can hold approximately $10 \square$ or one \qquad bytes of information.
4. A computer with a 1 gigabyte hard drive can store approximately \square one \qquad bytes of information.
5. According to some scientists, the hearts of most mammals will beat about 10^{9} or one \qquad times in a lifetime.

Negative Powers of 10

Our base-ten place-value system works for decimals as well as for whole numbers.

Tens	Ones	.	Tenths	Hundredths	Thousandths
10 s	1 s	.	0.1 s	0.01 s	0.001 s

Negative powers of 10 can be used to name decimal places.
Example $10^{-2}=\frac{1}{10^{2}}=\frac{1}{10 * 10}=\frac{1}{10} * \frac{1}{10}=0.1 * 0.1=0.01$
Very small decimals can be hard to read in standard notation, so people often use number-and-word notation, exponential notation, or prefixes instead.

Guides for Small Numbers			
Number-and-Word Notation	Exponential Notation	Standard Notation	Prefix
1 tenth	$10^{-1}=\frac{1}{10}$	0.1	deci-
1 hundredth	$10^{-2}=\frac{1}{10 * 10}$	0.01	centi-
1 thousandth	$10^{-3}=\frac{1}{10 * 10 * 10}$	0.001	milli-
1 millionth	$10^{-6}=\frac{1}{10 * 10 * 10 * 10 * 10 * 10}$	0.000001	micro-
1 billionth	$10^{-9}=\frac{1}{10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10}$	0.000000001	nano-
1 trillionth	$10^{-12}=\frac{1}{10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10}$	0.000000000001	pico-

Use the table above to complete the following statements.

1. A fly can beat its wings once every 10^{-3} seconds, or once every one thousandth of a second. This is a \qquad second.
2. Earth travels around the sun at a speed of about 1 inch per microsecond.

This is 10^{\square} second, or a \qquad of a second.
3. Electricity can travel one foot in a nanosecond, or one \qquad of a second. This is 10 \square second.
4. In $10 \square$ second, or one picosecond, an air molecule can spin once.

This is a \qquad of a second.

Math Boxes 7.2

1. Multiply. Use the partial-products algorithm.
a. 87

* 65
b. $\quad 39$
* 24
c. $\quad 99$
* 26

2. Tell whether each number is prime or composite.
a. Number of hours in $\frac{1}{3}$ of a day
b. Number of minutes in $\frac{1}{12}$ of an hour \qquad
c. Number of weeks in $\frac{1}{4}$ of a year \qquad
d. Number of months in $\frac{2}{3}$ of a year
e. Number of days in $\frac{3}{7}$ of a week
3. What is the measure of angle T ?

measure $\angle T=$ \qquad -

4. Circle the fractions that are equivalent to $\frac{2}{3}$.

$\frac{8}{9}$	$\frac{20}{30}$	$\frac{14}{21}$	$\frac{6}{10}$	$\frac{12}{18}$

Scientific Notation

Complete the following pattern.

1. $10^{2}=10 * 10=100$
2. $10^{3}=10 * 10 * 10=$ \qquad
3. $10^{4}=$ \qquad $=$ \qquad
4. $10^{5}=$ \qquad $=$ \qquad
5. $10^{6}=$ \qquad $=$ \qquad

Use your answers in Problems 1-5 to help you complete the following.
6. $2 * 10^{2}=2 * 100=200$
7. $3 * 10^{3}=3 *$ \qquad $=$ \qquad
8. $4 * 10^{4}=$ \qquad * \qquad $=$ \qquad
9. $6 * 10^{5}=$ \qquad * \qquad $=$ \qquad
10. $8 * 10^{6}=$ \qquad * \qquad
\qquad

Numbers written as the product of a number and a power of 10 are said to be in scientific notation. Scientific notation is a useful way of writing large or small numbers. Many calculators display numbers one billion or larger with scientific notation.

Example In scientific notation, 4,000 is written as $4 * 10^{3}$.
It is read as "four times ten to the third power."
Write each of the following in standard notation and number-and-word notation.

Standard Notation Number-and-Word Notation

11. $5 * 10^{3}=$ \qquad
\qquad
12. $7 * 10^{2}=$ \qquad
\qquad
13. $2 * 10^{4}=$ \qquad
\qquad
14. $5 * 10^{6}=$ \qquad
\qquad

Math Boxes 7.3

1. a. What is the perimeter of the rectangle?

b. What is the area?
\qquad

2. a. Draw a circle that has a diameter of 4 centimeters.
b. The radius of the circle is
cm .

3. a. Find an object in the room that is about 15 centimeters long.
\qquad
b. Find an object in the room that is about 3 inches long.
\qquad

4. Use a calculator to rename each of the following in standard notation.
a. $3^{10}=$ \qquad
b. $8^{4}=$ \qquad
c. $4^{8}=$ \qquad
d. $5^{7}=$ \qquad
e. $9^{8}=$

5. Solve. Do not use a calculator.
a. $287+395=$ \qquad b. $712+504=$ \qquad
c. $776+$ \qquad $=1,943$
d. $2,080=948+$ \qquad

e. \qquad $+286=345$

History of the Earth

Geologists, anthropologists, paleontologists, and other scholars often estimate when important events occurred in the history of the Earth. For example, when did dinosaurs become extinct? When did the Rocky Mountains develop? The estimates are very broad, partly because events like these lasted for many years, and partly because dating methods cannot precisely pinpoint exact times so long ago.

Scientists base their estimates on the geological record—rocks, fossils, and other clues-and on the bones and tools left by humans long ago. Below is a list of events prepared by one group of scientists. All the data are approximations, and different estimates are given by other scientists.

Use the place-value chart on the next page to help you write, in standard notation, how long ago the events below took place.

Example Earth was formed about $5 * 10^{9}$ years ago. Find 10^{9} on the place-value chart and write 5 beneath it, followed by zeros in the cells to the right. Then use the chart to help you read the number: $5 * 10^{9}=5$ billion.

What happened:

Some scientists say it happened about this many years ago:

1. Earth was formed.
$5 * 10^{9}$ years
2. The first signs of life (bacteria cells) appeared.
$4 * 10^{9}$
3. Fish appeared.
$4 * 10^{8}$
4. Forests, swamps, insects, and reptiles appeared.
$3 * 10^{8}$
5. Tyrannosaurus Rex lived; modern trees appeared.
$1 * 10^{8}$
6. The first known human-like primates appeared.
$6 * 10^{6}$
7. Woolly mammoths and other large ice-age mammals appeared. $8 * 10^{5}$
8. Humans first moved from Asia to North America.
$2 * 10^{4}$

Challenge

9. The first dinosaurs appeared; the Appalachian Mountains formed.
$2.5 * 10^{8}$
10. Dinosaurs became extinct.
$6.5 * 10^{7}$
Source: The Handy Science Answer Book

History of the Earth (cont.)

	Billion	100 M	10 M	Million	100 Th	10 Th	Thousand	100	10	One
	10^{9}	10^{8}	10^{7}	10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}
1.										
2.										
3.										
4.:										
5.										
6.										
7.										
8.										
9.										
10.										

Reminder: Powers are calculated before other factors are multiplied. $5.5 * 10^{4}=5.5 * 10,000=55,000$.

That's a Yotta Numbers

Prefixes for very large and very small numbers, such as tera- (10 ${ }^{12}$) and pico- $\left(10^{-12}\right)$, were adopted by an international scientific and mathematics committee in 1960. Since then, scientists and mathematicians have routinely worked with still larger and smaller numbers and have updated the list of prefixes.

The most recent adoption was yotta(10^{24}) in 1991. Yotta- is based on the Latin word for eight, because 1 septillion is equal to 1,000 to the eighth power $\left(1,000^{8}\right)$. Can you think of a prefix for 1 octillion and 1 nonillion?

Number	Exponential Notation	Prefix
1 quadrillion	10^{15}	peta-
1 quintillion	10^{18}	exa-
1 sextillion	10^{21}	zetta-
1 septillion	10^{24}	yotta-
1 octillion	10^{27}	
1 nonillion	10^{30}	

History of the Earth (cont.)

Work with a partner to answer the following questions.
11. According to the estimates of scientists, about how many years passed from the formation of Earth until the first signs of life?
\qquad
12. About how many years passed between the appearance of the first fish and the appearance of forests and swamps?
13. Make up and answer one or two questions of your own about data in the table of Earth's history. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Challenge

14. According to the geological record, about how long did dinosaurs roam on Earth?

Math Boxes 7.4

1. Rewrite each fraction pair with common denominators.
a. $\frac{2}{3}$ and $\frac{3}{5}$
b. $\frac{3}{7}$ and $\frac{9}{10}$
c. $\frac{3}{8}$ and $\frac{18}{24}$ \qquad
2. Complete the table.

Fraction	Decimal	Percent
$\frac{2}{3}$		
	0.95	
		43%
$\frac{3}{5}$	0.8	

3. a. Make a stem-and-leaf plot of the hand-span measures in Ms. Grip's fifth grade class.
$163,179,170,165,182,157,154,165,170$,
175, 162, 185, 158, 158, 170, 165, 162, 154
b. Find the following landmarks for the data.

Median: \qquad Minimum: \qquad

Range: \qquad Mode(s): \qquad
4. Divide. Show your work.
a. $2 1 \longdiv { 4 9 3 }$
b. $3 5 \longdiv { 6 2 3 }$

Parentheses and Number Stories

Math Message

1. Make a true sentence by filling in the missing number.
a. $7.3-(2.2+1.1)=$ \qquad
b. $(7.3-2.2)+1.1=$ \qquad
c. $2.0 *(7.5+1.5)=$ \qquad d. $(2.0 * 7.5)+1.5=$ \qquad
2. Solve the following problem to get as many different answers as possible. Write a number sentence for each way.

$$
6 * 4-2 / 2=?
$$

Match each number story with the expression that fits that story.

3. Story 1

Tom had 4 cans of soda.
He went shopping and bought 3 six-packs of soda cans.

Story 2

Tom had 4 six-packs of soda cans.
He went shopping and bought 3 more six-packs of soda cans.

$$
4+(3 * 6)
$$

Tom's total number of soda cans:

$$
(4+3) * 6
$$

Parentheses and Number Stories (cont.)

4. Story 1

Alice ate 3 cookies before going to a party.
At the party, Alice and 4 friends ate equal shares of 45 cookies.

Story 2

There was a full bag with 45 cookies, and an opened bag with 3 cookies.
Alice and 4 friends ate equal shares of all these cookies.

5. Story 1

Mr. Chung baked 5 batches of cookies.
Each of the first 4 batches contained 15 cookies. The final batch contained only 5 cookies.

Story 2

In the morning, Mr. Chung baked $(15 * 4)+5$ 4 batches of 15 cookies each. In the afternoon, he baked 5 more batches of 15 cookies each.

Number of cookies baked:
Number of cookies Alice ate:
$3+(45 / 5)$
$(3+45) / 5$
$15 *(4+5)$
6. A grocery store received a shipment of 120 cases of apple juice. Each case contained 4 six-packs of cans. After inspection, the store found that 9 cans were damaged.

Write an expression that represents the number of undamaged cans.

Date

Order of Operations

Use the rules of order of operations to complete these number sentences.

1. $100+500 / 2=$ \qquad
2. $24 / 6+3 * 2=$ \qquad
3. $2 * 4^{2}=$ \qquad
4. $25-10+5 * 2+100 / 20=$ \qquad
5. $24 / 6 / 2+12-3 * 2=$ \qquad
Insert parentheses in each problem below to get as many different answers as you can.
The first one is done as an example.
6. $5+4 * 9=(5+4) * 9=81 \quad 5+(4 * 9)=41$
7. $4 * 3+10=$ \qquad
8. $6 * 4 / 2=$ \qquad
9. $10-6-4=$ \qquad

First, solve these problems by hand. Then solve them with your calculator.

	By Hand	Calculator
10.	$5+3 * 6=\ldots$	$5+3 * 6=$
11.	$3 * 6+5=\ldots$	$3 * 6+5=$
12.	$36-18 / 6=$	$36-18 / 6=$
13.	$44-6 * 5=\ldots$	$44-6 * 5=$

14. a. Does your calculator obey the correct order of operations? \qquad
b. If your calculator obeys the correct order of operations, how do you know?
\qquad
\qquad
c. If your calculator doesn't obey the correct order of operations, then what order does it use? \qquad

American Tour: Inequalities

Use the American Tour section of your Student Reference Book to make comparisons of population, geographic area, or other data. Use $>$ or $<$ to write an inequality for each comparison.

Symbol	Meaning
$>$	is greater than
$<$	is less than

	Comparison	Inequality
1.		
2.		
3.		
4.		
5.		
6.		

Math Boxes 7.5

1. Multiply. Use the partial-products algorithm.
a. 43
b.
19
c. $\quad 79$

* 78
* 86
* 42

2. Tell whether each number is prime or composite.
a. Number of millimeters in 2.9 centimeters \qquad
b. Number of inches in $1 \frac{1}{2}$ yards \qquad
c. Number of centimeters in 0.35 meter \qquad
d. Number of inches in $\frac{5}{6}$ foot \qquad
e. Number of feet in $4 \frac{1}{3}$ yards
3. What is the measure of angle R ?

0
measure $\angle R=$ \qquad
4. Circle the fractions that are equivalent to $\frac{3}{8}$.
$\frac{6}{12}$
$\frac{9}{24}$
$\frac{8}{3}$
$\frac{4}{9}$
$\frac{15}{40}$

Positive and Negative Numbers on a Number Line

1. Graph each of the following bicycle race events on the number line below. Label each event with its letter. (Hint: Zero on the number line stands for the starting time of the race.)

A Check in 5 minutes before the race starts.

C Get on the bicycle 30 seconds before the race starts.

E Complete the first lap 3 minutes, 15 seconds after the race starts.

B Change gears 30 seconds after the race starts.

D The winner finishes at 6 minutes, 45 seconds.

F Check the tires 2 minutes before the race starts.

Minutes
2. Mr. Pima's class planned a raffle. Five students were asked to sell raffle tickets. The goal for each student was $\$ 50$ in ticket sales. The table below shows how well each of the five students did. Complete the table. Then graph the amounts from the last column on the number line below the table. Label each amount with that student's letter.

Student	Ticket Sales	Amount That Ticket Sales Were Above or Below Goal
A	$\$ 5.50$ short of goal	$-\$ 5.50$
B	Met goal exactly	
C	Exceeded goal by $\$ 1.75$	
D	Sold $\$ 41.75$	
E	Sold $\$ 53.25$	

\$ sales above or below goal

Comparing and Ordering Numbers

For any pair of numbers on the number line, the number to the left is less than the number to the right.

-10 is less than -5 , because -10 is to the left of -5 .
We use the $<$ (less than) symbol to write $-10<-5$.
+10 is greater than +5 , because +10 is to the right of +5 .

Reminder: When writing the $>$ or $<$ symbol, be sure the arrow tip points to the smaller number.

We use the $>$ (greater than) symbol to write $+10>+5$.

Write $>$ or $<$.

1. -5
5
2. 10 \qquad -10
3. -10
0
4. 14 \qquad 7
5. -14 \qquad -7
6. 0 \qquad $-6 \frac{1}{2}$

Answer the following.
7. What is the value of π to two decimal places? \qquad
8. $-\pi=$ \qquad

List the numbers in order from least to greatest.
9. $-10,14,-100, \frac{8}{2},-17,0$ \qquad
10. $-0.5,0,-4,-\pi,-4.5$ \qquad

Answer the following.
11. Name four positive numbers less than π. \qquad
12. Name four negative numbers greater than $-\pi$. \qquad

Review and Practice with Parentheses

Solve.

1. $(4+5) / 3=$
2. $(3+2) *(4-2)=$ \qquad
3. $((3+2) *(4-2)) / 2=$ \qquad
4. $5 *((5+5) *(5+5))=$ \qquad
5. \qquad $=32 /(16 / 2)$
6. \qquad $=(32 / 16) / 2$
7. $(6.5+8.3) /(3-1)=$ \qquad

Make each sentence true by inserting parentheses.
8. $18-11+3=10$
9. $18-11+3=4$
10. $14-7+5+1=13$
11. $14-7+5+1=1$
12. $14-7+5+1=3$
13. $100=15+10 * 4$
14. $4=24 / 4+2$
15. $8=24 / 4+2$
16. $10-4 / 2 * 3=24$
17. $10-4 / 2 * 3=1$

Math Boxes 7.6

1. a. A rectangle has a perimeter of 12 cm . One side is 4 cm long. Draw the rectangle.
b. What is the area of the rectangle you drew? \qquad
2. Find the radius and diameter of the circle.

Radius = \qquad
Diameter $=$ \qquad
5. Solve. Do not use a calculator.
a. $\quad 243$
b. 385
c. 1,006
d. 6,463
e. 513
$\begin{array}{r}+477 \\ \hline\end{array}$
$\begin{array}{r}+948 \\ \hline\end{array}$
-597
$\begin{array}{r}2,099 \\ \hline\end{array}$

-475

4. Use a calculator to rename each of the following in standard notation.
a. $7^{3}=$ \qquad
b. $9^{5}=$ \qquad
c. $4^{5}=$ \qquad
d. $6^{8}=$ \qquad
e. $3^{7}=$ \qquad about 10 centimeters long.
\qquad
\qquad
5. a. Find an object in the room that is about 10 inches long.
\qquad
b. Find an object in the room that is

500

Math Message

The game 500 is a bat-and-ball game for two or more players. One player hits balls to the other players. The other players score points by catching the hit balls. Scoring is shown at the right.

Catch	Points
fly	100
one bounce	75
two bounces	50
grounder	25

If a player drops a ball, then the points are subtracted. For example, if a player tries to catch a fly ball and drops it, then 100 points are subtracted from the player's score.

The first player to reach 500 points becomes the next batter and the game starts over.
Sometimes, players have to go "in the hole." This happens when they miss a catch worth more points than they have. For example, if the first hit of the game is a fly and a player misses it, that player is 100 points "in the hole."

1. Complete the following table for a game of 500 .

Action	Points Scored	Total Score
caught grounder	+25	25
missed fly	-100	75 in the hole
caught two-bouncer	+50	
caught fly		
missed fly		
missed one-bouncer		
missed fly		
caught fly		
caught fly		
caught fly		
missed one-bouncer		
caught fly		

2. Evan was 125 in the hole. How might he have gotten that score?
\qquad
\qquad

Using Counters to Show an Account Balance

Use Math Masters，page 96．Shade the \pm squares with a regular pencil and the \square squares with a red pencil or crayon．Then cut out the squares．
－Each \dagger counter represents $\$ 1$ of cash on hand．
－Each \square counter represents a $\$ 1$ debt，or $\$ 1$ that is owed．
Your account balance is the amount of money that you have or that you owe． If you have money in your account，your balance is＂in the black．＂ If you owe money，your account is＂in the red．＂

1．Suppose you have this set of counters．
田田田田日曰
a．What is your account balance？ \qquad
b．Are you＂in the red＂or＂in the black＂？ \qquad

2．Use + and \square counters to show an account with a balance of $+\$ 5$ ．Draw a picture of the counters below．

3．Use + and \square counters to show an account with a balance of $-\$ 8$ ．Draw a picture of the counters below．

4．Useandcounters to show an account with a balance of \＄0．Draw a picture of the counters below．

Addition of Positive and Negative Numbers

Use your counters to help you solve these problems. Draw \square and \square counters to show how you solved each problem.

1. $+8+(-2)=$ \qquad
2. $-4+(-5)=$ \qquad
3. $-3+(+7)=$ \qquad

Solve these addition problems.
4. $50+(-30)=$ \qquad
5. \qquad

$$
=-50+30
$$

6. $-16+10=$ \qquad 7. $\quad=16+(-10)$
7. $-9+(-20)=$ \qquad 9. $\quad=-15+15$
8. $27+(-18)=$ \qquad 11. \qquad $=-43+(-62)$
9. $-17+(-17)=$ \qquad 13. \qquad $=-55+32$

Challenge

14. The temperature at sunset was $13^{\circ} \mathrm{C}$. During the night, the temperature dropped $22^{\circ} \mathrm{C}$. Write a number model and figure out the temperature at sunrise the next morning.

Number model: \qquad
Answer: \qquad

Math Boxes 7.7

1. Write each fraction as a mixed number or a whole number.
a. $\quad \square=\frac{38}{3}$
b. $\quad \square=\frac{83}{7}$
c. $=\frac{42}{6}$
d. $=\frac{28}{11}$
e. $=\frac{47}{12}$

2. Write each numeral in number-and-word notation.
a. $43,000,000$ \qquad
b. 607,000 \qquad
c. $3,000,000,000$ \qquad
d. 72,000 \qquad

3. Complete the "What's My Rule?" table and state the rule.

Rule

\bigcirc	\square
100	
9	0.9
50	5
	1.5
	0.5

2. Subtract. (Hint: Use a number line to help you.)
a. $25-25=$ \qquad
b. $25-27=$ \qquad
c. $15-18=$ \qquad
d. $46-50=$ \qquad
e. $38-82=$ \qquad
4. Round each number to the nearest thousand.
a. 7,091
b. 35,658 \qquad
c. 829,543 \qquad
d. 105,799 \qquad
e. 372,372 \qquad

6. A person breathes an average of 12 to 15 times per minute. At this rate, about how many breaths might a person take in a day? \qquad
Explain how you got your answer.
\qquad
\qquad
\qquad

Finding Balances

In the following problems, use your $\$ 1$ cash cards as \square counters and your $\$ 1$ debt cards as \square counters. The balance is the total value of the combined \square and \square counters.

Draw a picture of the \square and \square counters to show how you found each balance.

1. You have $3 \square$ counters. Add $6 \square$ counters.

Balance $=$ \qquad counters
2. You have $5 \square$ counters. Add $7 \square$ counters.

Balance $=$ \qquad counters
3. You have $5 \square$ counters. Add $5 \square$ counters.

Balance $=$ \qquad counters
4. Show a balance of -7 using 15 of your \square and \square counters.
5. You have $7 \square$ counters. Take away $4 \square$ counters.
Balance = \qquad counters
6. You have $7 \square$ counters. Take away $4 \square$ counters.

Balance $=$ \qquad counters

$$
\begin{aligned}
& \text { 7. You have } 7 \square \text { counters. Take away } 4 \square \text { counters. } \\
& \text { Balance }=\square \text { counters }
\end{aligned}
$$

Adding and Subtracting Numbers

You and your partner combine your \pm and \square counters. Use the counters to help you solve the problems.

$$
1 .
$$

2.

Balance = \qquad
If $4 \square$ counters are subtracted from the container, what is the new balance?

New balance $=$ \qquad
Number model: \qquad
3.

4.

Balance $=$
If $3+$ counters are subtracted from the container, what is the new balance?

New balance $=$ \qquad
Number model: \qquad

Balance =
If $4 \square$ counters are added to the container, what is the new balance?

New balance $=$ \qquad
Number model: \qquad

Balance $=$ \qquad
If $3 \square$ counters are added to the container, what is the new balance?

New balance $=$ \qquad
Number model: \qquad

Adding and Subtracting Numbers (cont)

5.

Balance $=$
If $6 \square$ counters are subtracted
from the container, what is the new balance?

New balance = \qquad
Number model: \qquad
7.

Balance = \qquad
If $2 \square$ counters are subtracted from the container, what is the new balance?

New balance $=$ \qquad
Number model: \qquad
6.

Balance $=$ \qquad
If $6 \square$ counters are added to the container, what is the new balance?

New balance $=$ \qquad
Number model: \qquad
8.

Balance = \qquad
If $2 \square$ counters are added to the container, what is the new balance?

New balance $=$ \qquad
Number model: \qquad
9. Write a rule for subtracting positive and negative numbers.
\qquad
\qquad
\qquad

Subtraction Problems

Rewrite each subtraction problem as an addition problem. Then solve it.

1. $100-45=100+(-45)=$ \qquad
2. $-100-45=$ \qquad
\qquad
3. $160-(-80)=$ \qquad
\qquad
4. $9-(-2)=$ \qquad
\qquad
5. $-4-(-2)=$ \qquad $=$ \qquad
6. $-15-(-30)=$ \qquad
\qquad
7. $8-10=$ \qquad $=$ \qquad
8. $-20-(-7)=$ \qquad
\qquad
9. $\pi-(-\pi)=$ \qquad $=$ \qquad
10. $0-(-6.1)=$ \qquad

$$
=
$$

\qquad

Challenge

11. The Healthy Delights Candy Company specializes in candy that is wholesome and good for you. Unfortunately, they have been losing money for several years. During the year 2000, they lost $\$ 12$ million, ending the year with a total debt of $\$ 23$ million.
a. What was Healthy Delights' total debt at the beginning of 2000 ? \qquad
b. Write a number model that fits this problem.
12. In 2001, Healthy Delights is expecting to lose $\$ 8$ million.
a. What will Healthy Delights' total debt be at the end of 2001? \qquad
b. Write a number model that fits this problem. \qquad

Math Boxes 7.8

1. Find the whole set.
a. 4 is $\frac{1}{8}$ of the set. \qquad
b. 4 is $\frac{2}{5}$ of the set. \qquad
c. 9 is $\frac{3}{7}$ of the set. \qquad
d. 5 is $\frac{1}{3}$ of the set. \qquad
e. 12 is $\frac{3}{8}$ of the set.

2. Make true sentences by inserting parentheses.
a. $5 * 4-2=10$
b. $25+8 * 7=81$
c. $36 / 6-5=36$
d. $45 / 9+6=11$
e. $45 / 9+6=3$
3. Make a circle graph of the survey results.

Favorite After-School Activity	
Activity	Students
Eat Snack	18%
Visit Friends	35%
Watch TV	22%
Read	10%
Play Outside	15%

4. Add. Use fraction sticks to help you.
a. $\frac{1}{4}+\frac{2}{4}=$ \qquad

b. $\frac{3}{8}+\frac{1}{4}=$ \qquad
c. $\frac{1}{2}+\frac{1}{8}=$ \qquad

d. $\frac{2}{3}+\frac{1}{6}=$ \qquad

e. $\frac{2}{6}+\frac{2}{6}=$ \qquad

Addition and Subtraction on a Slide Rule

Math Message Find each sum or difference.

1. $13-(+10)=$ \qquad 2. $13-10=$ \qquad 3. $13+(-10)=$ \qquad

Slide Rule Problems

Example 1 Addition
Example 2 Subtraction

Face in the negative direction
(1) Align the 0-mark on the slider with -6 on the holder.

Integer slider

Integer holder
(2) Imagine facing in the negative direction on the slider. Go backward 4 on the slider. (So you are actually going in the positive direction on the slider.) The 4 on the slider is aligned with -2 on the holder. This is the answer: $-6-(-4)=-2$.

Use your slide rule to solve each problem.
4. $12-17=$ \qquad
5. $12+(-17)=$ \qquad
6. $10-(-4)=$ \qquad
7. $10+4=$ \qquad
8. $-10-(-5)=$ \qquad
10. $-2+(-13)=$ \qquad
11. $-5-10=$ \qquad
12. $-8+8=$ \qquad
13. $-8-8=$ \qquad
14. $-8+(-8)=$ \qquad
15. $-8-(-8)=$ \qquad

Using a Ruler

1. Mark each of these lengths on the ruler shown below. Write the letter above your mark. Point A has been done for you.
A: $2 \frac{1}{16} \mathrm{in}$.
B. $4 \frac{3}{8} \mathrm{in}$.
C. $3 \frac{3}{4} \mathrm{in}$.
D: $1 \frac{7}{16} \mathrm{in}$.
E: $2 \frac{4}{8} \mathrm{in}$.

2. Measure the following line segments to the nearest $\frac{1}{16}$ of an inch.
a.
\qquad in.
b. \qquad
\qquad in.
c.
\qquad in.
d.
\qquad in.
3. Draw a line segment that is $4 \frac{3}{16}$ inches long.
4. Draw a line segment that is $3 \frac{1}{2}$ inches long.
5. Complete these ruler puzzles.

Example $\frac{1}{4}$ in. $=\frac{x}{8}$ in. $=\frac{y}{16}$ in. $\quad x=4 \quad y=4$
a. $\frac{6}{8}$ in. $=\frac{x}{16}$ in. $=\frac{3}{y}$ in. $x=\longrightarrow \quad y=$ \qquad
b. $3 \frac{2}{8}$ in. $=3 \frac{\mathrm{~m}}{4}$ in. $=3 \frac{4}{n}$ in.
$m=$ \qquad $n=$
c. $\frac{6}{r}$ in. $=\frac{12}{s}$ in. $=\frac{t}{4}$ in. \qquad $s=$ \qquad $t=$ \qquad

Math Boxes 7.9

1. Write each mixed number as a fraction.
a. $\quad=3 \frac{4}{7}$
b. \longrightarrow $=5 \frac{2}{3}$
c. \quad $=6 \frac{8}{9}$
d. $=4 \frac{12}{9}$
e. $\quad=8 \frac{6}{4}$
2. Write each numeral in number-and-word notation.
a. $56,000,000$ \qquad
b. 423,000 \qquad
c. $18,000,000,000$ \qquad
d. $9,500,000$ \qquad
3. Complete the "What's My Rule?" table and state the rule.
Rule

\bigcirc	\square
28	7
16	
1	
	5
0	

2. Subtract. (Hint: Use a number line to help you).
a. $32-38=$ \qquad
b. $14-21=$ \qquad
c. $84-85=$ \qquad
d. $36-52=$ \qquad
e. $40-73=$ \qquad
3. Round each number to the nearest tenth.
a. 45.06 \qquad
b. 29.95 \qquad
c. 1.005 \qquad
d. 7.98 \qquad
e. 5.76 \qquad
4. Marcus had $\$ 5.00$ to spend on lunch. He bought a hot dog for $\$ 1.75$ and some french fries for $\$ 0.69$. How much money did he have left for dessert?

Entering Negative Numbers on a Calculator

Math Message

1. Press the Θ key, then 3 , and then E Enter . What number is shown in the display?
\qquad
2. Repeat the steps in Problem 1 with other numbers.
3. a. What is the opposite of 5 ?

Enter the opposite of 5 in the calculator.
b. What is the opposite of the opposite of 5 ?

Enter this number in the calculator, using the Θ key.
4. What does the Θ key do? \qquad
\qquad
\qquad
\qquad

Addition and Subtraction Using a Calculator

Use your calculator to solve each problem. Record how you did it.

Example

$12+(-17)=-5$
5. $-10-17=$ \qquad
6. $-10+(-17)=$ \qquad
7. $-27+220=$ \qquad
8. $19-43=$ \qquad
9. $-35-(-35)=$ \qquad
10. $72+(-47)=$ \qquad
Use with Lesson 7.10.

Addition and Subtraction Using a Calculator (cont.)

Solve. Use your calculator.
11. $3.65-2.02=$
13. $-901-199=$ \qquad
15. $-2+(-13)+7=$ \qquad
17. $41 / 328=$ \qquad
19. $-41 / 328=$ \qquad
21. $41 *(7+2)=$ \qquad
12. $10-(-5)=$ \qquad
14. $-7.1+18.6=$ \qquad
16. $2-7-(-15)=$ \qquad
18. $3 * 3.14=$ \qquad
20. $-(3 * 3.14)=$ \qquad
22. $41 *(7+(-2))=$ \qquad

Number Stories

23. A salesperson is often assigned a quota. A quota is the dollar value of the goods that the salesperson is expected to sell.

Suppose a salesperson is $\$ 3,500$ below quota and then makes a sale of $\$ 4,700$.
Did the salesperson exceed or fall short of his or her quota? \qquad

Write a number model to figure out by how much the salesperson exceeded or fell short. (Use negative and positive numbers. Think about a number line with the quota at 0 .)

Number model: \qquad
Solution: \qquad
24. Stock prices change every day. The first day, a stock's price went up $\frac{1}{4}$ dollar per share. The next day, it went down $\frac{1}{2}$ dollar. The third day, it went up $\frac{5}{8}$ dollar.

Did the value increase or decrease from the beginning of Day 1 to the end of Day 3? \qquad
Write a number model to figure out by how much the stock increased or decreased over the 3-day period. (Use negative and positive numbers. Think about a number line with the Day 1 starting price at 0. .)

Number model: \qquad
Solution: \qquad

Plotting Ordered Pairs

1. Plot the following ordered pairs on the grid below. As you plot each point, connect it with a line segment to the last one you plotted. (Use your ruler.)
$(0,3) ;(3,-2) ;(3,-8) ;(-3,-8) ;(-3,-2)$
2. Plot the following ordered pairs on the grid below. As you plot each point, connect it with a line segment to the last one you plotted. (Use your ruler.)
$\left(1,1 \frac{1}{3}\right) ;(1,4) ;(2,4)$
3. Plot the following ordered pairs on the grid below. As you plot each point, connect it with a line segment to the last one you plotted. (Use your ruler.)
$(1,-8) ;(1,-5) ;(-1,-5) ;(-1,-8)$

Math Boxes 7.10

1. There are 36 stamps in each package. How many stamps are there in ...
a. $\frac{3}{4}$ of a package? \qquad
b. $\frac{5}{6}$ of a package? \qquad
c. $\frac{2}{9}$ of a package? \qquad
d. $\frac{7}{12}$ of a package? \qquad
e. $\frac{2}{3}$ of a package? \qquad
2. Make a circle graph of the survey results.

Time Spent on Homework	
Time	Percent of Students
$0-29$ minutes	25
$30-59$ minutes	48
$60-89$ minutes	10
$90-119$ minutes	12
2 hours or more	5

4. Add. Use fraction sticks to help you.
a. $\frac{1}{4}+\frac{1}{2}=$ \qquad

b. $\frac{1}{4}+\frac{5}{8}=$ \qquad

c. $\frac{4}{6}+\frac{1}{3}=$ \qquad

d. $\frac{1}{2}+\frac{1}{3}=$ \qquad
e. $\frac{1}{6}+\frac{1}{2}=$ \qquad

Time to Reflect

1. Look through your journal pages in this unit. Which pages do you think show your best work? Explain. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Explain why you think we have negative numbers in our number system. Give examples to support your claims. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. List some of the skills and concepts you learned in this unit that you think are important to remember because you will use them in the future. Explain your answers. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Math Boxes 7.11

1. Rewrite each fraction pair with common denominators.
a. $\frac{2}{5}$ and $\frac{3}{7}$
b. $\frac{4}{12}$ and $\frac{6}{9}$
c. $\frac{8}{10}$ and $\frac{10}{15}$
2. Multiply. Use the partial-products algorithm.
a. 26
b. 71

* 32
* 58
c. $\quad 93$
* 47

4. Write each fraction as a mixed number or a whole number.
a. $\frac{39}{4}=$ \qquad
b. $\frac{62}{7}=$ \qquad
c. $\frac{45}{6}=$ \qquad
d. $\frac{200}{5}=$ \qquad
e. $\frac{83}{9}=$ \qquad
5. Find the whole set.
a. 10 is $\frac{1}{5}$ of the set. \qquad
b. 12 is $\frac{3}{4}$ of the set. \qquad
c. 8 is $\frac{2}{7}$ of the set. \qquad
d. 15 is $\frac{5}{8}$ of the set. \qquad
e. 9 is $\frac{3}{5}$ of the set. \qquad

Comparing Fractions

Math Message

Write $<$ or $>$. Be prepared to explain how you decided on each answer.

1. $\frac{3}{5} \square \frac{4}{5}$
2. $\frac{4}{5} \square \frac{4}{7}$
3. $\frac{5}{9} \square \frac{3}{7}$
4. $\frac{7}{8} \square \frac{6}{7}$
$<$ means is less than.
$>$ means is more than.

Equivalent Fractions

Cross out the fraction in each list that is not equivalent to the other fractions.
5. $\frac{2}{3}, \frac{4}{6}, \frac{18}{24}, \frac{20}{30}$
6. $\frac{1}{4}, \frac{2}{8}, \frac{4}{20}, \frac{6}{24}, \frac{8}{32}$
7. $\frac{3}{5}, \frac{6}{10}, \frac{9}{20}, \frac{15}{25}$

Write $=$ or \neq in each box.
8. $\frac{3}{5} \square \frac{10}{15}$
9. $\frac{6}{8} \square \frac{16}{24}$
10. $\frac{15}{24} \square \frac{5}{8}$
11. $\frac{6}{14}$

\neq means is
not equal to.

Give three equivalent fractions for each fraction.
12. $\frac{6}{9}$ \qquad ,
13. $\frac{50}{100}$
\qquad , \qquad
14. $\frac{7}{10}$ \qquad ,
15. $\frac{15}{18}$
\qquad ,

Fill in the missing number.
16. $\frac{3}{4}=\frac{\square}{36}$
17. $\frac{3}{5}=\frac{\square}{20}$
18. $5=\frac{\square}{2}$
19. $\frac{\square}{9}=\frac{24}{18}$
20. $\frac{9}{12}=\frac{\square}{4}$
21. $\frac{16}{\square}=\frac{8}{10}$
22. $\frac{2}{5}=\frac{6}{\square}$
23. $\frac{15}{\square}=\frac{3}{5}$
24. $\frac{4}{9}=\frac{16}{\square}$

Write $<$ or $>$.
25: $\frac{2}{5} \square \frac{5}{10}$
26. $\frac{3}{4}$ \square $\frac{5}{6}$
27. $\frac{3}{8}$ \square
28. $\frac{3}{5}$ \square $\frac{4}{7}$

Fraction Review

1. a. Shade $\frac{1}{4}$ of the fraction stick.

b. Use the fraction stick to
find equivalent fractions: $\frac{1}{4}=\frac{\square}{8}=\frac{\square}{16}$
c. $\frac{1}{4}+\frac{1}{4}=$ \qquad
2. a. Shade $\frac{3}{8}$ of the fraction stick.
b. Is this more or less than $\frac{1}{2}$?
c. Is this more or less than $\frac{1}{4}$? \qquad

d. $\frac{3}{8}+\frac{1}{8}=$ \qquad
3. Joe had 2 granola bars. He ate $1 \frac{1}{2}$ bars.
a. Shade the part that he ate.
b. Write the part he ate as a decimal. \qquad
4. Circle the decimal that is equivalent to each fraction. Use your calculator to help you.
a. $\frac{1}{4}=$
0.5
0.14
0.25
1.4
b. $\frac{1}{10}=$
1.10
0.1
0.010
0.50
c. $\frac{2}{5}=$
0.4
0.25
2.5
0.2
5. Lucy had 16 beads. Half the beads were red. One fourth were blue. The rest were white.
a. Color $\frac{1}{2}$ of the beads red and $\frac{1}{4}$ blue.
b. What fraction of the beads are white? \qquad
c. Lucy put away all of the white beads.

What fraction of the remaining beads are red?

Math Boxes 8.1

1. Use a straightedge to draw as many lines of symmetry as you can.

2. Round each number to the nearest hundredth.
a. 432.089 \qquad
b. 650.127 \qquad
c. 227.715 \qquad
d. 38.002 \qquad
e. 61.099 \qquad

3. Solve only the problems with an answer over 1,000.
a.
b.
b. $\begin{array}{r}729 \\ +\quad 202 \\ \hline\end{array}$
c.
914
$\begin{array}{r}+986 \\ \hline\end{array}$
d. 1,235
e. 1,605
$\begin{array}{r}429 \\ +813 \\ \hline\end{array}$

- 189
- 493

4. Use the grid on the right to locate the following objects on the map. The first one has been done for you.
a. Fifth grader \qquad
b. Boat \qquad
c. Car \qquad
d. House
e. Tree
\qquad

Addition of Fractions

Math Message

Add. Write the sums in simplest form.

1. $\frac{3}{5}+\frac{1}{5}=$ \qquad 2. $\frac{3}{8}+\frac{1}{8}=$
2. $\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=$ \qquad
3. $\frac{3}{7}+\frac{5}{7}=$ \qquad 5. $\frac{7}{10}+\frac{7}{10}=$ \qquad 6. $\frac{5}{9}+\frac{7}{9}=$ \qquad
4. $\frac{1}{6}+\frac{2}{3}=$ \qquad 8. $\frac{2}{3}+\frac{2}{5}=$ \qquad 9. $\frac{5}{6}+\frac{5}{8}=$ \qquad

Addition of Mixed Numbers

Add. Write each sum as a whole number or mixed number.
10. $1 \frac{3}{5}$
11. $1 \frac{1}{2}$
12. $2 \frac{1}{4}$

$+1 \frac{1}{5}$

$+\frac{1}{2}$

$+3 \frac{3}{4}$

Fill in the missing numbers.
13. $5 \frac{12}{7}=6$

14. $7 \frac{8}{5}=\square \frac{3}{5}$
15. $2 \frac{5}{4}=3 \square$
16. $4 \frac{5}{3}=5 \square$
17. $12 \frac{11}{6}=13 \square$
18. $9 \frac{13}{10}=10 \square$

Add. Write each sum as a mixed number in simplest form.
19. $3 \frac{2}{3}$
20. $4 \frac{6}{7}$
21. $3 \frac{4}{9}$
$+5 \frac{2}{3}$

$+2 \frac{4}{7}$

$+6 \frac{8}{9}$

Addition of Mixed Numbers (cont.)

To add mixed numbers in which the fractions do not have the same denominator, you must first rename one or both fractions so that both fractions have a common denominator.

Example $2 \frac{3}{5}+4 \frac{2}{3}=$?

- Find a common denominator: The QCD of $\frac{3}{5}$ and $\frac{2}{3}$ is $5 * 3=15$.
- Write the problem in vertical form and rename the fractions:

- Rename the sum. $6 \frac{19}{15}=7 \frac{4}{15}$

Add. Write each sum as a mixed number in simplest form. Show your work.

1. $2 \frac{1}{3}+3 \frac{1}{4}=$ \qquad 2. $5 \frac{1}{2}+2 \frac{2}{5}=$
\qquad
2. $6 \frac{1}{3}+2 \frac{4}{9}=$ \qquad 4. $1 \frac{1}{2}+4 \frac{3}{4}=$
\qquad
3. $7 \frac{1}{4}+2 \frac{5}{6}=$ \qquad 6. $3 \frac{5}{6}+3 \frac{3}{4}=$
\qquad

Reading a Ruler

On the ruler below, points A through L mark distances from the beginning of the ruler (0 inches). Give the distance from 0 for each point. Point A has been done for you.

1. A : \qquad in.
2. B : \qquad in.
3. C : \qquad in.
4. D : \qquad in.
5. $E:$ \qquad in.
6. F : \qquad in.
7. G : \qquad in.
8. H : \qquad in.
9. I: \qquad in.
10. J: \qquad in.
11. K : \qquad in.
12. L : \qquad in.

Pick four of the points in Problems 1-12. For each point, write an equivalent name for its distance from 0.

Example \qquad : \qquad in. $=$ \qquad in.
13. \qquad : \qquad in. $=$ \qquad in.
14. \qquad : \qquad in. $=$ \qquad in.
15. \qquad : \qquad in. $=$ \qquad in.
16. \qquad : \qquad in. $=$ \qquad in.

Write $>,<$, or $=$.
17. $\frac{3}{4}$
$\frac{3}{4}-\frac{7}{8}$
$\frac{7}{8}$
18. $\frac{6}{9}$
$\frac{8}{12}$
19. $\frac{4}{7}$
$\frac{5}{9}$
20. $\frac{13}{24} \quad \frac{7}{15}$
21. $\frac{5}{7}-\frac{7}{10}$
22. $\frac{17}{18}$ \qquad $\frac{9}{10}$
23. Explain how you got your answer for Problem 20. \qquad

Math Boxes 8.2

1. Find the area of the rectangle.

$$
\text { Area }=b * h
$$

Area: \qquad

2. Javier has $\$ 5.00$ to buy school supplies. He wants one pack of pencils for \$1.38, a notebook for $\$ 2.74$, and some fancy writing paper for \$1.29. Does he have enough money? \qquad
Explain your answer. \qquad
\qquad
\qquad
\qquad
3. Solve.
a. If there are 12 counters in the whole set, how many are there in $\frac{3}{4}$ of the set? \qquad counters
c. If there are 5 counters in $\frac{1}{8}$ of the set, how many are there in the whole set?
\qquad counters
e. If there are 8 counters in $\frac{4}{7}$ of a set, how many are there in the whole set?
\qquad counters
b. If there are 15 counters in the whole set, how many are there in $\frac{2}{5}$ of the set? \qquad counters
d. If there are 3 counters in $\frac{2}{6}$ of the set, how many are there in the whole set?
\qquad counters
4. Use fraction sticks to add the fractions.
a. $\frac{1}{3}+\frac{3}{6}=$ \qquad

b. $\frac{1}{3}+\frac{5}{9}=$ \qquad

c. $\frac{2}{9}+\frac{2}{3}=$ \qquad

d. $\frac{4}{12}+\frac{1}{9}=$ \qquad

e. $\frac{1}{3}+\frac{5}{12}=$ \qquad

Subtraction of Mixed Numbers

Math Message

Subtract.

1. $3 \frac{3}{4}$
2. $4 \frac{4}{5}$
3. $7 \frac{5}{6}$
$-1 \frac{1}{4}$
-2
$-2 \frac{2}{6}$

Renaming and Subtracting Mixed Numbers

Fill in the missing numbers.
4. $5 \frac{1}{4}=4 \frac{\square}{4}$
5. $6=5 \frac{\square}{3}$
6. $3 \frac{5}{6}=\frac{\square}{6}$
7. $8 \frac{7}{9}=\square \frac{16}{9}$

Subtract. Write your answers in simplest form. Show your work.
8. $8-\frac{1}{3}=$
9. $5-2 \frac{3}{5}=$
\qquad
10. $7 \frac{1}{4}-3 \frac{3}{4}=$ \qquad 11. $4 \frac{5}{8}-3 \frac{7}{8}=$
12. $6 \frac{2}{9}-4 \frac{5}{9}=$ \qquad 13. $10 \frac{3}{10}-5 \frac{7}{10}=$

Addition and Subtraction Patterns

Add.

1. a. $\frac{1}{1}+\frac{1}{2}=$ \qquad b. $\frac{1}{2}+\frac{1}{3}=$ \qquad c. $\frac{1}{3}+\frac{1}{4}=$
d. $\frac{1}{4}+\frac{1}{5}=$ \qquad e. $\frac{1}{5}+\frac{1}{6}=$ \qquad
2. What pattern do you notice in Problems 1a through 1e? \qquad
\qquad
\qquad
3. Use the pattern above to solve these problems.
a. $\frac{1}{6}+\frac{1}{7}=$ \qquad b. $\frac{1}{10}+\frac{1}{11}=$ \qquad c. $\frac{1}{99}+\frac{1}{100}=$
\qquad
4. Do you think this pattern also works for problems like $\frac{1}{8}+\frac{1}{3}$? Explain.
\qquad
\qquad
5. The plus signs in Problem 1 have been replaced with minus signs. Find each answer.
a. $\frac{1}{1}-\frac{1}{2}=$ \qquad b. $\frac{1}{2}-\frac{1}{3}=$ \qquad c. $\frac{1}{3}-\frac{1}{4}=$
d. $\frac{1}{4}-\frac{1}{5}=$ \qquad e. $\frac{1}{5}-\frac{1}{6}=$ \qquad
f. Describe the pattern. \qquad
\qquad
\qquad

Math Boxes 8.3

1. Use a straightedge to draw as many lines of symmetry as you can.

2. Round each number to the nearest thousand.
a. 456,823 \qquad
b. 711,809 \qquad
c. $2,400,657$ \qquad
d. $7,000,221$ \qquad
e. 7,052 \qquad
3. Solve only the problems with an answer less than 500.
a. $\begin{array}{r}1,427 \\ -\quad 1,039 \\ \hline\end{array}$
b. 2,570
c. $\quad 382$
d. $\begin{array}{r}479 \\ +\quad 846 \\ \hline\end{array}$
e. $\begin{array}{r}118 \\ +\quad 372\end{array}$
$-1,039$

-670

$\begin{array}{r}-108 \\ \hline\end{array}$
$\begin{array}{r}+372 \\ \hline\end{array}$
4. On the grid, draw each animal whose location is given below.
a. A bird in C 2
b. A fish in D6
c. A turtle in E3
d. A snake in F1
e. A frog in F4

Calculator Key Investigation

Explore the seven function keys on your calculator. Use the sample keystrokes to help you find what each key does.

Key(s)	Sample Keystrokes	Function of Key(s)
Unit	Unit (n) (d) Ener	
- ${ }^{\text {and }}$ a	2 n 3 (dener	
$\underline{E}-\mathrm{D}$		
(simp		
U	14 n 3 (Ender Simp Encor 	
Fac	4 (8 Simp Entor Fac	

Finding a Fraction of a Number

One way to find a fraction of a number is to use a unit fraction. (A unit fraction is a fraction with 1 in the numerator.) You can also use a diagram to help you understand the problem.

Example What is $\frac{7}{8}$ of 32 ?

$$
\frac{1}{8} \text { of } 32 \text { is } 4 . \text { So } \frac{7}{8} \text { of } 32 \text { is } 7 * 4=28 \text {. }
$$

Solve.

1. $\frac{1}{5}$ of $75=$ \qquad 2. $\frac{2}{5}$ of $75=$ \qquad 3. $\frac{4}{5}$ of $75=$ \qquad
2. $\frac{1}{8}$ of $120=$
3. $\frac{3}{8}$ of $120=$ \qquad 6. $\frac{5}{8}$ of $120=$ \qquad

Solve Problems 7-18. They come from a math book that was published in 1904.

- First think of $\frac{1}{3}$ of each of these numbers, and then state $\frac{2}{3}$ of each.
\qquad

7. 9
8. 6 \qquad 9. 12 \qquad
9. 3 \qquad 11. 21 \qquad 12. 30 \qquad

- First think of $\frac{1}{4}$ of each of these numbers, and then state $\frac{3}{4}$ of each.

13. 32 \qquad 14. 40 \qquad 15. 12 \qquad
14. 24 \qquad 17. 20 \qquad 18. 28 \qquad
15. Lydia has 7 pages of a 12-page song memorized. Has she memorized more than $\frac{2}{3}$ of the song? \qquad
16. A CD that normally sells for $\$ 15$ is on sale for $\frac{1}{3}$ off. What is the sale price?
17. Christine bought a coat for $\frac{1}{4}$ off the regular price. She saved $\$ 20$. What did she pay for the coat? \qquad

Math Boxes 8.4

1. Find the area of the rectangle.

$$
\text { Area }=b * h
$$

Area:

2. Julie makes $\$ 4.00$ per week for doing the dishes every night. She paid her sister Amy \$0.75 each time Amy did the dishes for her. Is that a fair price?
\qquad
Explain your answer. \qquad
\qquad
\qquad
\qquad
3. Solve.
a. If there are 18 counters in the whole set, how many are there in $\frac{5}{6}$ of the set? \qquad counters
c. If there are 6 counters in $\frac{2}{7}$ of the set, how many are there in the whole set?
\qquad counters
e. If there are 9 counters in $\frac{3}{8}$ of the set, how many are there in the whole set?
\qquad counters
b. If there are 21 counters in the whole set, how many are there in $\frac{2}{3}$ of the set? \qquad counters
d. If there are 10 counters in $\frac{1}{5}$ of the set, how many are there in the whole set?
\qquad counters
4. Use fraction sticks to add the fractions.
a. $\frac{1}{4}+\frac{3}{3}=$ \qquad

b. $\frac{1}{8}+\frac{1}{2}=$ \qquad

c. $\frac{5}{8}+\frac{1}{4}=$ \qquad

d. $\frac{5}{12}+\frac{1}{4}=$ \qquad

e. $\frac{3}{4}+\frac{1}{12}=$ \qquad

Math Boxes 8.5

1. Name 2 objects that are shaped like a rectangular prism.
\qquad
\qquad
\qquad

2. Divide mentally.
a. $\quad 382 / 7 \rightarrow$ \qquad
b. $\quad 795$ / $5 \rightarrow$ \qquad
c. $\quad 496 / 4 \rightarrow$ \qquad
d. $283 \div 6 \rightarrow$ \qquad
e. $1,625 \div 8 \rightarrow$ \qquad
3. Amanda found a can containing 237 dominoes. A full set has 28 dominoes. What is the greatest number of complete sets that can be in the can? \qquad

Explain how you found your answer. \qquad
\qquad
\qquad
\qquad

4. Complete the table.

Standard Notation	Exponential Notation
10,000	10^{3}
	10^{8}
$1,000,000,000$	10^{5}

5. Complete the "What's My Rule?" table and state the rule.

Rule: \qquad

in	out
3	
8	40
$\frac{1}{2}$	
	50
4	

Number-Line Models

Use the number line above to help you answer Problems 1-10.

1. What is $\frac{1}{2}$ of 3 ? \qquad 2. What is $\frac{1}{4}$ of 2 ? \qquad
2. What is $\frac{3}{4}$ of 2 ? \qquad 4. What is $\frac{1}{3}$ of 3 ?
3. What is $\frac{1}{2}$ of $\frac{1}{2}$? \qquad 6. What is $\frac{1}{2}$ of $\frac{1}{4}$? \qquad
4. What is $\frac{1}{2}$ of $\frac{3}{4}$? \qquad 8. What is $\frac{1}{4}$ of $\frac{1}{2}$? \qquad
5. What is $\frac{1}{4}$ of $\frac{1}{4}$? \qquad
6. Explain how you figured out the answer to Problem 10. \qquad
\qquad
\qquad
\qquad

All (Winged) Creatures: Great and Small

The smallest bird is the bee hummingbird. It weighs about 2 grams (0.07 ounces) and is about 5.5 centimeters (2.2 inches) long. The largest bird is the ostrich. An adult ostrich can weigh more than 150 kilograms (330 pounds) and stand 2.5 meters (8 feet) tall. (It's no wonder that ostriches can't fly!) It would take more than 75,000 bee hummingbirds to balance one ostrich (if you could find a balance big enough). Source: Britannica Online

Paper-Folding Problems

Record your work for the four fraction problems you solved by paper folding. Sketch the folds and shading. Write an X on the parts that show the answer.

1. $\frac{1}{2}$ of $\frac{1}{2}$ is \qquad 2. $\frac{2}{3}$ of $\frac{1}{2}$ is \qquad
\square

2. $\frac{1}{4}$ of $\frac{2}{3}$ is \qquad 4. $\frac{3}{4}$ of $\frac{1}{2}$ is \qquad
\square

Paper-Folding Problems (cont.)

Solve these problems by paper folding. Sketch the folds and shading. Write an X on the parts that show the answer.
5. $\frac{1}{3}$ of $\frac{3}{4}$ is \qquad .
6. $\frac{1}{8}$ of $\frac{1}{2}$ is \qquad .

8. $\frac{3}{4}$ of $\frac{3}{4}$ is \qquad .
\qquad .

7. $\frac{5}{8}$ of $\frac{1}{2}$ is

Math Boxes 8.6

1. a. Plot the following points on the grid:
$(4,2) ;(2,4) ;(2,7) ;(6,7)$
b. Connect the points with line segments in the order given above. Then connect $(6,7)$ and $(4,2)$.

What shape have you drawn?

2. Write 3 equivalent fractions for each fraction.
a. $\frac{80}{100}=$ \qquad
b. $\frac{2}{3}=$ \qquad
c. $\frac{36}{9}=$ \qquad
d. $\frac{3}{24}=$ \qquad
e. $\frac{3}{8}=$

3. Measure the line segment below to the nearest $\frac{1}{4}$ inch.
\qquad in.
4. Divide.
a. $784 / 16$
b. $2 7 \longdiv { 6 1 3 }$
c. $5 4 \longdiv { 2 5 4 }$
\qquad

Fraction Multiplication

1. Use the rectangle at the right to sketch how you would fold paper to help you find $\frac{1}{3}$ of $\frac{2}{3}$.
What is $\frac{1}{3}$ of $\frac{2}{3}$? \qquad
2. Use the rectangle at the right to sketch how you would fold paper to help you find $\frac{1}{4}$ of $\frac{3}{5}$.
What is $\frac{1}{4}$ of $\frac{3}{5}$? \qquad
3. Rewrite " $\frac{2}{3}$ of $\frac{3}{4}$ " using the multiplication symbol *. \qquad
4. Rewrite the following using the multiplication symbol $*$.
a. $\frac{1}{4}$ of $\frac{1}{3}$ \qquad b. $\frac{4}{5}$ of $\frac{2}{3}$ \qquad
c. $\frac{1}{6}$ of $\frac{1}{4}$ \qquad d. $\frac{3}{7}$ of $\frac{2}{5}$ \qquad

Use with Lesson 8.6.

An Area Model for Fraction Multiplication

1. Use the rectangle at the right to find $\frac{2}{3} * \frac{3}{4}$.

$$
\frac{2}{3} * \frac{3}{4}=
$$

\qquad

Your completed drawing in Problem 1 is called an area model.
Use area models to complete the following.

2.

3.

4.

$$
\frac{2}{3} * \frac{1}{5}=
$$

\qquad
$\frac{3}{4} * \frac{2}{5}=$
\qquad
$\frac{1}{4} * \frac{5}{6}=$
\qquad
5.

6.

7.

$\frac{3}{8} * \frac{3}{5}=$ \qquad
$\frac{1}{2} * \frac{5}{8}=$ \qquad
$\frac{5}{6} * \frac{4}{5}=$ \qquad
8. Make up your own fraction multiplication problem.

Use an area model to help you solve it.
\qquad

An Algorithm for Fraction Multiplication

1. Look carefully at the fractions on journal page 270. What is the relationship between the numerators and the denominators of the two fractions being multiplied and the numerator and the denominator of their product?
\qquad
\qquad
\qquad
\qquad
2. Describe a way to multiply two fractions. \qquad
\qquad
\qquad
\qquad
3. Multiply the following fractions, using the shortcut discussed in class.
a. $\frac{1}{3} * \frac{1}{5}=$ \qquad b. $\frac{2}{3} * \frac{1}{3}=$ \qquad
c. $\frac{3}{10} * \frac{7}{10}=$ \qquad d. $\frac{5}{8} * \frac{1}{4}=$ \qquad
e. $\frac{3}{8} * \frac{5}{6}=$ \qquad f. $\frac{2}{5} * \frac{5}{12}=$ \qquad
g. $\frac{4}{5} * \frac{2}{5}=$ \qquad h. $\frac{4}{9} * \frac{3}{7}=$ \qquad

Cashing in on Fractions

Torn money might be worth something. If you have $\frac{3}{5}$ or more of a bill, it can be redeemed for its full face value. If you have less than $\frac{3}{5}$ but more than $\frac{2}{5}$ of a bill, it can be redeemed for $\frac{1}{2}$ of its face value. If you have $\frac{2}{5}$ or less, your bill is worthless. Source: You Can't Count a Billion Dollars

Place-Value Practice

Find the missing number.

1. The digit in the tens place is twice as big as the digit in the tenths place.

The digit in the ones place is $\frac{1}{2}$ the digit in the tenths place.
The digit in the hundredths place is $\frac{1}{2}$ the digit in the ones place.
The digit in the hundreds place is the largest odd digit.
\qquad
\qquad
\qquad . \qquad
\qquad
2. The digit in the hundreds place is a square number and it is odd.

The digit in the tens place is 1 more than the square root of 16 .
The digit in the hundredths place is 0.1 larger than $\frac{1}{10}$ of the digit in the hundreds place.
The digit in the thousandths place is equivalent to $\frac{30}{5}$.
The other digits are all 2 s .
\qquad
\qquad . \qquad

\qquad
3. Record the calculator keystrokes you enter to make the changes described below.

Beginning Number	Change to	Keystrokes
12,204	15,204	12204
807,995	808,005	807995
2.112	2.712	2.112
17.054	18.104	17.054
34.921	35.021	34.921

A Blast from the Past

1. From Kindergarten Everyday Mathematics:

This slice of pizza is what fraction of the whole pizza? \qquad
2. From First Grade Everyday Mathematics:

Write a fraction in each part of the diagrams below. Then color the figures as directed.
a.

Color $\frac{3}{4}$.
b.

Color $\frac{2}{3}$.
c.

Color $\frac{2}{2}$.
3. From Second Grade Everyday Mathematics:
a. \bigcirc

$\bigcirc \bigcirc 0$
$\bigcirc 00^{\circ}$

b. $\bigcirc \bigcirc \bigcirc$

$\bigcirc 0$
O

Color $\frac{1}{4}$ of the beads.
Color $\frac{1}{8}$ of the beads.
4. From Third Grade Everyday Mathematics:
a. $\frac{1}{2}$ of $\frac{1}{4}=$ \qquad
b. $\frac{1}{8}$ of $\frac{1}{2}=$ \qquad
c. $\frac{1}{2}$ of $\frac{1}{8}=$
\qquad
5. From Fourth Grade Everyday Mathematics:

Cross out $\frac{5}{6}$ of the dimes.

Area Models

Draw an area model for each product. Then write the product as a fraction or as a mixed number.
Example $\frac{2}{3} * 2=\frac{4}{3}$, or $1 \frac{1}{3}$

1. $\frac{1}{3} * 4=$ \qquad

2. $\frac{1}{4} * 3=$ \qquad

3. $2 * \frac{3}{5}=$ \qquad

4. $\frac{3}{8} * 3=$ \qquad

Using the Fraction Multiplication Algorithm

An Algorithm for Fraction Multiplication

$$
\frac{a}{b} * \frac{c}{d}=\frac{a * c}{b * d}
$$

The denominator of the product is the product of the denominators, and the numerator of the product is the product of the numerators.

Example $\frac{2}{3} * 2$

$$
\begin{aligned}
\frac{2}{3} * 2 & =\frac{2}{3} * \frac{2}{1} & & \text { Think of } 2 \text { as } \frac{2}{1} . \\
& =\frac{2 * 2}{3 * 1} & & \text { Apply the algorithm. } \\
& =\frac{4}{3} \text {, or } 1 \frac{1}{3} & & \text { Calculate the numerator and denominator. }
\end{aligned}
$$

Use the fraction multiplication algorithm to calculate the following products.

1. $\frac{3}{4} * 6=$ \qquad 2. $\frac{7}{8} * 3=$ \qquad
2. $\frac{3}{10} * 5=$ \qquad 4. $6 * \frac{4}{5}=$ \qquad
3. $\frac{5}{3} * 9=$ \qquad 6. $\frac{3}{8} * 12=$ \qquad
4. $\frac{1}{8} * 5=$ \qquad 8. $20 * \frac{3}{4}=$ \qquad
5. $\frac{5}{6} * 14=$ \qquad 10. $27 * \frac{2}{9}=$ \qquad

Date

Math Boxes 8.7

1. Name 2 objects that are shaped like prisms that are not rectangular prisms.
\qquad
\qquad
\qquad
2. Divide mentally.
a. $472 \div 5 \rightarrow$
b. 384 / $6 \rightarrow$
c. $729 / 8 \rightarrow$
d. $543 \div 4 \rightarrow$ \qquad
e. $576 \div 9 \rightarrow$ \qquad
3. Raphael bought 14 pounds of meat to make hamburgers at the Fourth of July barbecue. He made 5 hamburgers from each pound. Buns come in packages of 8 . How many packages of buns did Raphael need?

Explain your answer. \qquad
\qquad
\qquad
\qquad
4. Complete the table.

Standard Notation	Exponential Notation
	10^{5}
$1,000,000$	10^{9}
10,000	
	10^{7}

5. Complete the "What's My Rule?" table and state the rule.

Rule: \qquad

in	out
48	
40	5
	$\frac{1}{8}$
	0
16	

Review Converting Fractions to Mixed Numbers

You know that fractions larger than 1 can be written in several ways.

Example

Whole
hexagon
 worth?

The mixed-number name is $3 \frac{5}{6}\left(3 \frac{5}{6}\right.$ means $3+\frac{5}{6}$).
The fraction name is $\frac{23}{6}$. Think sixths:

$3 \frac{5}{6}, 3+\frac{5}{6}$, and $\frac{23}{6}$ are different names for the same number.
Write the following mixed numbers as fractions.

1. $2 \frac{3}{5}=$ \qquad 2. $4 \frac{7}{8}=$ \qquad
2. $1 \frac{2}{3}=$ \qquad 4. $3 \frac{6}{4}=$ \qquad

Write the following fractions as mixed or whole numbers.
5. $\frac{7}{3}=$ \qquad 6. $\frac{6}{1}=$ \qquad
7. $\frac{18}{4}=$ \qquad 8. $\frac{9}{3}=$ \qquad

Add.
9. $2+\frac{7}{8}=$ \qquad 10. $1+\frac{3}{4}=$
11. $3+\frac{3}{5}=$ \qquad 12. $6+2 \frac{1}{3}=$
\qquad
\qquad

Multiplication of Fractions and Mixed Numbers

Examples Using Partial Products

$$
\begin{array}{rl|l}
2 \frac{1}{3} * 2 \frac{1}{2} & =\left(2+\frac{1}{3}\right) *\left(2+\frac{1}{2}\right) & 3 \frac{1}{4} * \frac{2}{5}=\left(3+\frac{1}{4}\right) * \frac{2}{5} \\
2 * 2 & =4 & 3 * \frac{2}{5}=\frac{6}{5}=1 \frac{1}{5} \\
2 * \frac{1}{2} & =1 & \frac{1}{4} * \frac{2}{5}=\frac{2}{20}=+\frac{1}{10} \\
\frac{1}{3} * 2 & =\frac{2}{3} &
\end{array}
$$

$$
\frac{1}{3} * \frac{1}{2}=\frac{+\frac{1}{6}}{5 \frac{5}{6}}
$$

Examples Converting Mixed Numbers to Fractions

$$
\begin{aligned}
2 \frac{1}{3} * 2 \frac{1}{2} & =\frac{7}{3} * \frac{5}{2} \\
& =\frac{35}{6}=5 \frac{5}{6}
\end{aligned}
$$

$$
\begin{aligned}
3 \frac{1}{4} * \frac{2}{5} & =\frac{13}{4} * \frac{2}{5} \\
& =\frac{26}{20}=1 \frac{6}{20}=1 \frac{3}{10}
\end{aligned}
$$

Solve the following fraction and mixed-number multiplication problems.

1. $3 \frac{1}{2} * 2 \frac{1}{5}=$ \qquad
2. The surface of a calculator is approximately a rectangular prism. The back face

3. The area of a sheet of notebook paper is about
\qquad in. ${ }^{2}$

\qquad in. ${ }^{2}$.
4. The area of a computer disk is about
\qquad in. ${ }^{2}$.

5. Is the area of the flag greater or less than the area of your desk or tabletop? \qquad

Track Records on the Moon and the Planets

Every moon and planet in our solar system pulls objects toward it with the force called gravity.
In a recent Olympic games, the winning high jump was 7 feet 8 inches, or $7 \frac{2}{3}$ feet. The winning pole vault was 19 feet. Suppose that the Olympics were held on Earth's Moon, or on Jupiter, Mars, or Venus. What height might we expect for a winning high jump or a winning pole vault?

1. On the Moon, one could jump about 6 times as high as on Earth.

What would be the height of the winning ..
high jump? About \qquad feet pole vault? About \qquad feet
2. On Jupiter, one could jump about $\frac{3}{8}$ as high as on Earth.

What would be the height of the winning ...
high jump? About \qquad feet pole vault? About \qquad feet
3. On Mars, one could jump about $2 \frac{2}{3}$ times as high as on Earth.

What would be the height of the winning ...
high jump? About \qquad feet pole vault? About \qquad feet
4. On Venus, one could jump about $1 \frac{1}{7}$ times as high as on Earth.

What would be the height of the winning ...
high jump? About \qquad feet pole vault? About \qquad feet
5. Is Jupiter's pull of gravity stronger or weaker than Earth's? \qquad
Explain your reasoning.
\qquad
\qquad
\qquad

Challenge

6. The winning pole-vault height given above was rounded to the nearest whole number. The actual winning height was 19 feet $\frac{1}{4}$ inch. If you used this actual measurement, about how high would the winning jump be ...
on the Moon? \qquad on Jupiter? \qquad
on Mars? \qquad on Venus? \qquad

Math Boxes 8.8

1. a. Plot the following points on the grid:

$$
(-3,-3) ;(1,1) ;(4,1) ;(0,-3)
$$

b. Connect the points with line segments in the order given above. Then connect $(-3,-3)$ and $(0,-3)$.

What shape have you drawn?

2. Write 3 equivalent fractions for each fraction.
a. $\frac{2}{5}=$ \qquad
b. $\frac{4}{7}=$ \qquad
c. $\frac{1}{12}=$ \qquad
d. $\frac{40}{50}=$ \qquad
e. $\frac{25}{75}=$ \qquad
4. Divide.
a. $1 2 \longdiv { 5 9 7 }$ \qquad b. $2 2 \longdiv { 3 , 8 4 0 }$ \qquad c. $1 5 \longdiv { 1 , 6 3 0 }$
\qquad

Finding a Percent of a Number

1. The Madison Middle School boys' basketball team has played 5 games. The table at the right shows the number of shots taken by each player and the percent of shots that were baskets. Study the example. Then calculate the number of baskets made by each player.

Example

Bill took 15 shots.
He made a basket on 40% of these shots.
$40 \%=\frac{40}{100}$, or $\frac{4}{10}$
$\frac{4}{10}$ of $15=\frac{4}{10} * \frac{15}{1}=\frac{4 * 15}{10 * 1}=\frac{60}{10}=6$
Bill made 6 baskets.
2. On the basis of shooting ability, which five players might you select as the starting lineup for the next basketball game?

Player	Shots Taken	Percent Made	Baskets
Bill	15	40%	6
Amit	40	30%	
Josh	25	60%	
Kevin	8	75%	
Mike	60	25%	
Zheng	44	25%	
André	50	10%	
David	25	20%	
Bob	18	50%	
Lars	15	20%	
Justin	28	25%	

3. What other factors might you consider when making this decision?
4. Which player(s) might you encourage to shoot more often? \qquad Why? \qquad
\qquad
5. Which player(s) might you encourage to pass more often? \qquad
Why? \qquad
\qquad

Calculating a Discount

Example The list price for a toaster is $\$ 45$. The toaster is sold at a 12% discount (12% off the list price). What are the savings? (Reminder: $12 \%=\frac{12}{100}=0.12$)

Paper and pencil:

$$
\begin{aligned}
12 \% \text { of } \$ 45 & =\frac{12}{100} * 45=\frac{12}{100} * \frac{45}{1} \\
& =\frac{12 * 45}{100 * 1}=\frac{540}{100} \\
& =\$ 5.40
\end{aligned}
$$

Calculator:

$$
\text { Enter } 0.12 \otimes 45 \text { Enner ; interpret answer } 5.4 \text { as } \$ 5.40 \text {. }
$$

First use your percent sense to estimate the discount for each item in the table below. The discount is the amount by which the list price of an item is reduced. It is the amount the customer saves.

Then use your calculator or paper and pencil to calculate the discount. (If necessary, round to the nearest cent.)

Item	List Price	Percent of Discount	Estimated Discount	Calculated Discount
Clock radio	$\$ 33.00$	20%		
Calculator	$\$ 60.00$	7%		
Sweater	$\$ 20.00$	42%		
Tent	$\$ 180.00$	30%		
Bicycle	$\$ 200.00$	17%		
Computer	$\$ 980.00$	25%		
Skis	$\$ 325.00$	18%		
Double CD	$\$ 29.99$	15%		
Jacket	$\$ 110.00$	55%		

Math Boxes 8.9

1. What is the volume of the cube below?

cubic units
2. Insert parentheses to make each sentence true.
a. $48 \div 6+2 * 4=16$
b. $48 \div 6+2 * 4=24$
c. $45=54-24 / 6-5$
d. $0=54-24 / 6-5$
e. $30=54-24 / 6-5$
3. Find the difference between the highest and lowest temperatures recorded in each state.

	Lowest	Highest	Difference
Alaska	$-80^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{F}$	
Arizona	$-40^{\circ} \mathrm{F}$	$127^{\circ} \mathrm{F}$	
Nebraska	$-47^{\circ} \mathrm{F}$	$118^{\circ} \mathrm{F}$	
South Dakota	$-58^{\circ} \mathrm{F}$	$120^{\circ} \mathrm{F}$	

Source: World Almanac
4. Add. Do not use a calculator.
a. $3 \frac{1}{8}+2 \frac{1}{4}=$ \qquad
b. \qquad
c. $=1 \frac{7}{8}+2 \frac{1}{2}$
d. \qquad $=\frac{8}{10}+3 \frac{5}{4}$
e. \qquad $=\frac{7}{8}+\frac{1}{5}$
5. List the factors of 142.
\qquad

Unit Fractions and Unit Percents

1. If 12 counters are $\frac{1}{5}$ of a set, how many counters are in the set? \qquad counters
2. If 15 counters are $\frac{1}{7}$ of a set, how many counters are in the set? \qquad counters
3. If 31 pages are $\frac{1}{8}$ of a book, how many pages are in the book?
pages
4. If 13 marbles are 1% of the marbles in a jar, how many marbles are in the jar? \qquad marbles
5. If $\$ 5.43$ is 1% of the cost of a TV, what does the TV cost? \qquad dollars
6. If 84 counters are 10% of a set, how many counters are in the set?
counters
7. After 80 minutes, Dorothy had read

120 pages of a 300-page book. If she continues reading at the same rate, about how long will it take her to read the entire book? \qquad minutes
8. Eighty-four people attended the school concert. This was 70% of the number expected to attend. How many people were expected to attend? \qquad people

Challenge

9. In its most recent game, the Lincoln Junior High basketball team made 36 baskets, which was 48% of the shots team members tried.
How many shots did they try? \qquad shots

Using a Unit Fraction or a Unit Percent to Find the Whole

1. Six jars are filled with cookies. The number of cookies in each jar is not known. For each clue given below, find the number of cookies in the jar.

Clue	Number of Cookies in Jar
a. $\frac{1}{2}$ jar contains 31 cookies.	
b. $\frac{2}{8}$ jar contains 10 cookies.	
c. $\frac{3}{5}$ jar contains 36 cookies.	
d. $\frac{3}{8}$ jar contains 21 cookies.	
e. $\frac{4}{7}$ jar contains 64 cookies.	
f. $\frac{3}{11}$ jar contains 45 cookies.	

2. Use your percent sense to estimate the list price for each item. Then calculate the list price. (Hint: First use your calculator to find what 1% is worth.)

Sale Price	Percent of List Price	Estimated List Price	Calculated List Price
$\$ 120.00$	60%	$\$ / 80$	$\$ 200$
$\$ 100.00$	50%		
$\$ 8.00$	32%		
$\$ 255.00$	85%		
$\$ 77.00$	55%		
$\$ 80.00$	40%		
$\$ 9.00$	60%		
$\$ 112.50$	75%		
$\$ 450.00$	90%		

3. Alan is walking to a friend's house. He covered $\frac{6}{10}$ of the distance in 48 minutes. If he continues at the same speed, about how long will the entire walk take?

Using a Unit Fraction or a Unit Percent to Find the Whole (cont.)

4. 24 is $\frac{1}{2}$ of what number? \qquad
5. 27 is $\frac{3}{4}$ of what number? \qquad 7. $\frac{3}{8}$ is $\frac{3}{4}$ of what number? \qquad
6. 60 is 50% of what number? \qquad
7. $\frac{2}{5}$ is $\frac{1}{2}$ of what number? \qquad
8. 16 is 25% of what number? \qquad
9. 40 is 80% of what number? \qquad

The problems below are from an arithmetic book published in 1906. Solve the problems.
11. If the average coal miner works $\frac{2}{3}$ of a month of 30 days, how many days during the month does he work? \qquad days
12. A recipe for fudge calls for $\frac{1}{4}$ of a cake of chocolate. If a cake costs 20ϕ, find the cost of the chocolate called for by the recipe. \qquad \varnothing
13. In target practice the battleship Indiana shot at a target 24 times. If $\frac{3}{4}$ of the shots hit, how many successful shots were fired? \qquad shots
14. A collection of mail that required 6 hours for a postman to make with a horse and wagon was made in an automobile in $\frac{5}{12}$ the time. How long did the automobile take? \qquad hours
15. How many corks per day does a machine in Spain make from the bark of the cork tree, if it makes $\frac{1}{3}$ of a sack of 15,000 corks in that time? \qquad corks
Source: Milne's Progressive Arithmetic

Challenge

16. It's easy to write 1 as a sum of unit fractions if the same unit fraction may be used more than once. For example: $\frac{1}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{6}=1$

Try to write 1 as a sum of unit fractions without repeating a fraction. Try to find more than one solution.

Math Boxes 8.10

1. Use your Geometry Template to draw a parallelogram.

What are some other names for the figure you drew?
\qquad
\qquad SRB 135136
3. Draw and label a 30° angle.
2. Write $>$ or $<$.
a. 50% \qquad $\frac{2}{3}$
b. $620-80$ \qquad $30 * 40$
c. $\frac{7}{8}$ \qquad $\frac{1}{4}+\frac{2}{4}$
d. $20 * 19$ 20^{2}
e. $0.35+0.25$ \qquad $\frac{1}{8}+\frac{1}{8}$
4. Circle the numbers below that are evenly divisible by 6 .
$148 \quad 293 \quad 762 \quad 1,050 \quad 984$

5. Solve.
a. $\quad 75$
b. 425
c. $\quad 759$
d. 422

* 88
* 68
* 13
185

Math Boxes 8.11

1. What is the volume of the rectangular prism?

\qquad cubic units
2. Insert parentheses to make each sentence true.
a. $22+3 / 3-2=21$
b. $22+3 / 3-2=25$
c. $18 / 6+3 * 5=18$
d. $18 / 6+3 * 5=10$
e. $5+7 * 3 / 9=4$
3. During the last game, Eric ran the football six times. Following are the results for each run.

First run: +20 yards
Second run: -6 yards
Third run: -5 yards
Fourth run: +10 yards
Fifth run: -15 yards
Sixth run: -9 yards
a. Did Eric end the game with a net gain or a net loss of yardage? \qquad
b. How much of a gain or loss? \qquad
4. Add. Do not use a calculator.
a. $2 \frac{3}{4}+1 \frac{1}{2}=$ \qquad
b.
$=\frac{3}{8}+\frac{5}{6}$
c. $\quad=6 \frac{1}{5}+3 \frac{2}{3}$
d.
$=5 \frac{1}{8}+\frac{14}{8}$
e. $\quad=$
$=4 \frac{3}{10}+6 \frac{1}{2}$
5. List the factors of 165.
\qquad

Class Survey

1. How many people live in your home?
O 1-2 people
O 3-5 people
06 or more people
2. What language do you speak at home?
0 English
0 Spanish
0 Other: \qquad
3. Are you right- or left-handed?

0 right-handed 0 left-handed
4. How long have you lived at your current address? (Round to the nearest year.)
\qquad years
5. Pick one of the questions above. Tell why someone you don't know might be interested in your answer to the question you picked.
\qquad
\qquad
\qquad
\qquad
\qquad
6. Fifteen percent of the 20 students in Ms. Swanson's class were left-handed.

How many students were left-handed? \qquad students
7. About 85% of the 600 students at Emerson Middle School speak English at home. Another 10% speak Spanish, and 5% speak other languages. About how many students speak each language at home?

English: \qquad students

Spanish: \qquad students

Other: \qquad students
8. The government reported that 5% of $90,000,000$ workers do not have jobs.

How many workers were jobless? \qquad workers

Rural and Urban Populations

The U.S. Census Bureau classifies where people live according to the following rule: Rural areas are communities having fewer than 2,500 people each. Urban areas are communities having 2,500 or more people each.

1. According to the Census Bureau's definition, do you live in a rural or an urban area?

How did you decide? \qquad
\qquad
\qquad
\qquad

Today more than three out of every four residents in the United States live in areas the Census Bureau defines as urban. This was not always the case. When the United States was formed, it was a rural nation.

Work with your classmates and use the information in the Student Reference Book, pages 308, 309, and 334 to examine the transformation of the United States from a rural to an urban nation.
2. My group is to estimate the number of people living in
(rural or urban)
(1790, 1850, 1900, or 2000)
3. The total U.S. population in $\operatorname{in}_{(1790,1850,1900, \text { or } 2000)}$ was \qquad .
4. Estimate: The number of people living in \qquad areas in (rural or urban) was about \qquad .
(1790, 1850, 1900, or 2000)
Make sure your answer is rounded to the nearest 100,000.
5. Our estimation strategy was \qquad
\qquad
\qquad
\qquad

Rural and Urban Populations (cont.)

6. Use the estimates from the groups in your class to complete the following table.

Estimated Rural and Urban Populations, 1790-2000		
Year	Estimated Rural Population	Estimated Urban Population
1790		
1850		
1900		
2000		

7. Is it fair to say that for more than half our nation's history, the majority of the population lived in rural areas?

Explain your answer.
\qquad
\qquad
\qquad
\qquad
8. About how many times larger was the rural population in 2000 than in 1790 ?
\qquad
9. About how many times larger was the urban population in 2000 than in 1790 ?
\qquad

Challenge

10. In which decade do you think the urban population became larger than the rural population?

Division

Math Message

1. How many 2-pound boxes of candy can be made from 10 pounds of candy?
\qquad boxes
2. How many $\frac{3}{4}$-pound boxes of candy can be made from 6 pounds of candy?
\qquad boxes
3. Sam has 5 pounds of peanut brittle. He wants to pack it in $\frac{3}{4}$-pound packages.

How many full packages can he make? \qquad full packages

Will any peanut brittle be left over? \qquad How much? \qquad pound
4.

a. How many 2 -inch segments are there in 6 inches? \qquad segments
b. How many $\frac{1}{2}$-inch segments are there in 6 inches? \qquad segments
c. How many $\frac{1}{8}$-inch segments are there in $\frac{3}{4}$ of an inch? \qquad segments

Common Denominator Division

One way to divide fractions uses common denominators:
Step 1 Rename the fractions using a common denominator.
Step 2 Divide the numerators.
This method can also be used for whole or mixed numbers divided by fractions.

Examples

$3 \div \frac{3}{4}$	$=?$	$\frac{1}{3} \div \frac{1}{6}$ $=?$ $3 \frac{3}{5} \div \frac{3}{5}=\frac{18}{5} \div \frac{3}{5}$ $3 \div \frac{3}{4}$ $=\frac{12}{4} \div \frac{3}{4}$ $\frac{1}{3} \div \frac{1}{6}$ $=\frac{2}{6} \div \frac{1}{6}$ $=12 \div 3=4$ $=2 \div 1=2$

Common Denominator Division (cont.)

Solve.

1. $4 \div \frac{4}{5}=$ \qquad
2. $\frac{5}{6} \div \frac{1}{18}=$ \qquad
3. $3 \frac{1}{3} \div \frac{5}{6}=$ \qquad
4. $6 \frac{3}{5} \div 2 \frac{2}{10}=$ \qquad
5. $2 \div \frac{2}{5}=$ \qquad
6. $2 \div \frac{2}{3}=$ \qquad
7. $6 \div \frac{3}{5}=$ \qquad
8. $\frac{1}{2} \div \frac{1}{8}=$ \qquad
9. $\frac{3}{5} \div \frac{1}{10}=$ \qquad
10. $\frac{6}{5} \div \frac{3}{10}=$ \qquad
11. $1 \frac{1}{2} \div \frac{3}{4}=$ \qquad
12. $4 \frac{1}{5} \div \frac{3}{5}=$ \qquad
13. Chase is packing cookies in $\frac{1}{2}$-pound bags. He has 10 pounds of cookies.

How many bags can he pack? \qquad bags
14. Regina is cutting lanyard to make bracelets. She has 15 feet of lanyard and needs $1 \frac{1}{2}$ feet for each bracelet. How many bracelets can she make? \qquad bracelets
15. Eric is planning a pizza party. He has 3 large pizzas. He figures each person will eat $\frac{3}{8}$ of a pizza. How many people can attend the party, including himself?
\qquad people

Math Boxes 8.12

1. Use your Geometry Template to draw a triangle.
2. Write $>$ or $<$.
a. $15+28 \ldots 10^{2}$
b. $40+40$ _ $3 * 30$
c. $\frac{1}{2}+\frac{1}{2}$ $\frac{3}{4}$
d. $\frac{19}{20}$ $0.6+0.3$
e. $55 \div 5$ $120 \div 12$
3. Circle the numbers below that are evenly divisible by 9 .
$\begin{array}{lllll}3,735 & 2,043 & 192 & 769 & 594\end{array}$
4. Solve.
a. 429

* 15
b. $\quad 134$
* 82
c. $\quad 706$
* 189

Time to Reflect

1. Describe several situations in which knowing how to solve percent-of problems would be helpful.
\qquad
\qquad
\qquad
\qquad
\qquad
2. Explain why you think it is important to know how to find equivalent fractions with common denominators.
\qquad
\qquad
\qquad
\qquad
\qquad
3. Look back through your journal pages for this unit. What do you think is the most important skill or concept you learned in this unit? Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad

Math Boxes 8.13

1. a. Plot the following points on the coordinate grid.
$(-4,-1) ;(-3,1) ;(1,3) ;(2,1) ;(-2,-1)$
b. Connect the points with line segments in the order given above. Then connect $(-4,-1)$ and $(-2,-1)$.

What shape have you drawn?
\qquad
2. Use a straightedge to draw as many lines of symmetry as you can.

4. What is the volume of the rectangular prism?

units ${ }^{3}$

3. Find the area of the rectangle.

$$
\text { Area }=b * h
$$

Area: \qquad
5. Use your Geometry Template to draw a trapezoid.

How does the trapezoid you drew differ from other quadrangles on the Geometry Template?
\qquad
\qquad
\qquad
\qquad

Plotting a Turtle

Points on a coordinate grid are named by ordered number pairs. The first number in an ordered number pair locates the point along the horizontal axis. The second number locates the point along the vertical axis. To mark a point on a coordinate grid, first go right (or left) on the horizontal axis. Then go up (or down) from there.

Plot an outline of the turtle on the graph below. Start with the nose, at point $(8,12)$.

Hidden Treasure Gameboards

Each player uses Grids 1 and 2.
Grid 1: Hide your point here.

Use Grids 1 and 2 to play another game.
Grid 1: Hide your point here.

Grid 2: Guess other player's point here.

Grid 2: Guess other player's point here.

Matching Graphs to Number Stories

1. Draw a line matching each graph below to the number story that it best fits.
a. Juanita started with $\$ 350$. She saved another \$25 every week.

Graph B

2. Explain how you decided which graph matches each number story.
\qquad
\qquad
\qquad
3. Circle the rule below that best fits the number story in Problem 1a above.

Savings $=\$ 350+(25 *$ number of weeks $)$
Savings $=\$ 350-(25 *$ number of weeks $)$
Savings $=\$ 350 *$ number of weeks

Math Boxes 9.1

1. a. What is the diameter of the largest circle that will fit inside the box for this problem?
\qquad
b. Explain your answer.
\qquad
\qquad
\qquad

2. a. Write the largest number you can that is less than 1 by using each of the following digits only once: 4752 .
\qquad
b. Write the number in words.
\qquad
\qquad
\qquad

3. Write a number model that describes each of the shaded rectangles.
a.

b.

c.

\qquad
\qquad

4. Divide mentally.
a. $829 / 4 \rightarrow$ \qquad
b. $608 \div 3 \rightarrow$ \qquad
c. $943 \div 2 \rightarrow$ \qquad
d. $780 \div 5 \rightarrow$
e. $698 / 7 \rightarrow$

5. Find something in the room that is about 18 inches long.
\qquad
\qquad

Plotting a Map

1. a. Plot the following ordered number pairs on the grid.

$$
(21,14),(17,11),(17,13),(15,14),(2,16),(1,11),(2,8),(3,6),(7.5,5.5),(11,2.5)
$$ and $(12.5,4)$

b. Connect all the points in the same order in which they were plotted. Also connect $(12.5,4)$ to $(17.5,5)$ and $(21.5,15.5)$ to $(21,14)$. When you have finished, you should see an outline map of the continental United States.
2. Write an ordered number pair to locate each city.
a. Chicago, Illinois \qquad ,
) b. Atlanta, Georgia (\qquad ,
c. Dallas, Texas (\qquad , \qquad d. Denver, Colorado \qquad , ——
3. Plot each city on the grid and write in the city name.
a. Billings, Montana $(7.5,13)$
b. Salt Lake City, Utah $(5.5,10.5)$
4. The U.S.-Mexican border is shown by line segments from $(3,6)$ to $(7.5,5.5)$ and from $(7.5,5.5)$ to $(11,2.5)$. Write the border name on the grid.

Sailboat Graphs

1. a. Using the ordered number pairs listed in the column titled Original Sailboat in the table below, plot the ordered number pairs on the grid titled Original Sailboat on the next page.
b. Connect the points in the same order that you plot them. You should see the outline of a sailboat.
2. Fill in the missing ordered number pairs in the last three columns of the table. Use the rule given in each column to calculate the ordered number pairs.

Original Sailboat	New Sailboat 1 Rule: Double each number of the original pair.	New Sailboat 2 Rule: Double the first number of the original pair.	New Sailboat 3 Rule: Double the second number of the original pair.
$(8,1)$	$(16,2)$	(16.1)	$(8,2)$
$(5,1)$	$(10,2)$	$(10,1)$	$(5,2)$
$(5,7)$	(10,14)	$(10,7)$	$(5,14)$
$(1,2)$	(___ , _)	(___ , _)	(_ _ , _)
$(5,1)$	((\underline{Z}, \ldots)	(___
$(0,1)$	(___ , _	(___ , _	(___ , _
$(2,0)$	(___ , _	(___ , _	(___ , _
$(7,0)$	(___	(___	(___ , _)
$(8,1)$	(__ , _	(__ , _	(___ , _

3. a. Plot the ordered number pairs for New Sailboat 1 on the next page. Connect the points in the same order that you plot them.
b. Then plot the ordered number pairs for New Sailboat 2 and connect the points.
c. Finally, plot the ordered number pairs for New Sailboat 3 and connect the points.

Date

Sailboat Graphs (cont.)

Original Sailboat

Place-Value Puzzles

1. The digit in the thousands place is 8 .

The digit in the ones place is the sum of the digits in three centuries. (Hint: If there are \qquad years in one century, then there are \qquad years in three centuries.)

The digit in the millions place is $\frac{1}{10}$ of 40 .
The digit in the hundred-thousands place is $\frac{1}{2}$ of the digit in the thousands place.
The digit in the hundreds place is the sum of the digit in the millions place and the digit in the ones place.

The rest of the digits are all 5 s .
\qquad - , \qquad
\qquad
\qquad
\qquad
\qquad
Write this number in words. \qquad
2. The digit in the tenths place is 1 .

The digit in the ones place is double the digit in the tenths place.
The digit in the thousandths place is $\frac{1}{3}$ of 21 .
The digit in the hundreds place is three times the digit in the tenths place.
The digit in the ten-thousands place is an odd number less than 6 that you haven't used yet.

The rest of the digits are all 9s.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Write this number in words. \qquad
\qquad
3. Make up a puzzle of your own.
\qquad
\qquad
\qquad
\qquad

Math Boxes 9.2

1. Complete the "What's My Rule?" table and state the rule.

Rule: \qquad

in	out
2	-10
	0
16	4
3	
	-5

3. Multiply. Show your work.
a.
55

* 37
b.
$\begin{array}{r}92 \\ \times \quad 74 \\ \hline\end{array}$
c. 318
* 64

4. Measure each angle.
a. $\angle L I D$ measures about \qquad \circ

b. $\angle F U N$ measures \circ about \qquad .

5. Name two equivalent fractions for each fraction below.
a. $\frac{4}{5}=$ \qquad
b. $\frac{5}{9}=$ \qquad
c. $\frac{3}{7}=$ \qquad
d. $\frac{6}{11}=$ \qquad
e. $\frac{8}{3}=$ \qquad

More Sailboat Graphs

1. a. Using the ordered number pairs listed in the column titled Original Sailboat in the table below, plot the ordered number pairs on the grid on the next page.
b. Connect the points in the same order they were plotted. You should see the outline of a sailboat. Write "original" in the sail.
2. Fill in the missing ordered number pairs in the last three columns of the table. Use the rule given in each column to calculate the ordered number pairs.

Original Sailboat	New Sailboat 1 Rule: Add 10 to the first number of the original number pair.	New Sailboat 2 Rule: Change the first number of the original pair to the opposite number.	New Sailboat 3 Rule: Change the second number of the original pair to the opposite number.
$(9,3)$	$(19,3)$	$(-9,3)$	$(9,-3)$
$(6,3)$	$(16,3)$	$(-6,3)$	$(6,-3)$
$(6,9)$	$(16,9)$	$(-6,9)$	$(6,-9)$
$(2,4)$	(((
$(6,3)$	(((
$(1,3)$	(((
$(3,2)$	(__ , _	((
$(8,2)$	(((
$(9,3)$	((___ , _)	(___ , ___)

3. a. Plot the ordered number pairs for New Sailboat 1 on the next page. Connect the points in the same order that you plot them. Write " 1 " in the sail.
b. Then plot the ordered number pairs for New Sailboat 2 and connect the points.

Write " 2 " in the sail.
c. Finally, plot the ordered number pairs for New Sailboat 3 and connect the points. Write " 3 " in the sail.

More Sailboat Graphs (cont.)

4. Use the following rule to create a new sailboat figure on the grid above.

Label it "4."
Rule: Add 10 to the second number of the original pair. Leave the first number unchanged.

Try to plot the new coordinates without listing them.

Advanced Hidden Treasure Gameboards

Each player uses Grids 1 and 2.

Grid 1: Hide your point here.

Grid 1

Use Grids 1 and 2 to play another game.
Grid 1: Hide your point here.

Grid 1

Grid 2: Guess other player's point here.

Grid 2

Grid 2: Guess other player's point here.

Grid 2

Math Boxes 9.3

1. a. Will a circle with a radius of 4 inches fit inside a circle with a diameter of 5 inches?
\qquad
b. Explain your answer.
\qquad
\qquad
\qquad
\qquad
2. Write a number model that describes each of the shaded rectangles.
a.

b.

c.

3. Multiply or divide mentally.
a. $386 \div 4 \rightarrow$ \qquad
b. $673 \div 9 \rightarrow$ \qquad
c. $68 * 50=$ \qquad
d. $299 * 15=$ \qquad
e. $295 \div 4 \rightarrow$ \qquad

Date

Areas of Rectangles

$1 \mathrm{~cm}^{2}$																	
$\xrightarrow{1 \mathrm{~cm}}$																	
			(or														
A																	
				C													
					\square												

1. Fill in the table. Draw rectangles D, E, and F on the grid.

Rectangle	Base (length)	Height (width)	Area
A	$\ldots \mathrm{cm}$	$\ldots \mathrm{cm}$	$\ldots \mathrm{cm}^{2}$
B	_ cm	$\square \mathrm{cm}$	$\underline{c m}{ }^{2}$
C	_ cm	- cm	_ cm^{2}
D	6 cm	$\ldots \mathrm{cm}$	$12 \mathrm{~cm}^{2}$
E	3.5 cm	- cm	$14 \mathrm{~cm}^{2}$
F	3 cm	$\ldots \mathrm{cm}$	$10.5 \mathrm{~cm}^{2}$

2. Write a formula for finding the area of a rectangle.

Area $=$ \qquad

Area Problems

1. A bedroom floor is 12 feet by 15 feet (4 yards by 5 yards).

Floor area $=$ \qquad square feet

Floor area $=$ \qquad square yards

12 ft
(4 yd)

2. Imagine that you want to buy carpet for the bedroom in Problem 1. The carpet comes on a roll that is 6 feet (2 yards) wide. The carpet salesperson unrolls the carpet to the length you want and cuts off your piece. How long a piece will you need to cover the bedroom floor? \qquad
6 ft (2 yd)

3. Fill in the missing lengths for the figures below.
a.

\qquad ft
b.
yd

Review of 2-Dimensional Figures

Match each description of a geometric figure in Column A with its name in Column B. Not every name in Column B has a match.
A
a. A polygon with 4 right angles and 4 sides of the same length
b. A polygon with 4 sides, no two of which need to be the same size
c. A quadrilateral with exactly one pair of opposite sides that are parallel
d. Lines in the same plane that never intersect
e. A parallelogram (that is not a square) with all sides the same length
f. A polygon with 8 sides
g. Two intersecting lines that form a right angle
h. A polygon with 5 sides
i. An angle that measures 90°
\qquad parallel lines
\qquad pentagon
\qquad isosceles triangle
\qquad quadrilateral
j. A triangle with all sides the same length

Math Boxes 9.4

1. Complete the "What's My Rule?" table and state the rule.

Rule:

in	out
5	
3	-2
	5
0	
	-7

2. Complete the table.

Standard Notation	Scientific Notation
8,000	$8 * 10^{3}$
60,000	$5 * 10^{5}$
	$4 * 10^{5}$
700,000	

3. Divide. Show your work.
a. \qquad $\rightarrow 384 \div 21$
b. $2,935 \div 17 \rightarrow$ \qquad c. $8,796 \div 43 \rightarrow$
4. What is the measure of $\angle A$?
\qquad

5. Name two equivalent fractions for each fraction below.
a. $\frac{7}{8}=$ \qquad
b. $\frac{3}{10}=$ \qquad
c. $\frac{6}{7}=$ \qquad
d. $\frac{1}{6}=$ \qquad
e. $\frac{12}{5}=$ \qquad

Personal References

In Fourth Grade Everyday Mathematics, you found personal references for metric and U.S. customary units of length, weight, and capacity. These references are familiar objects whose sizes approximate standard measures. For example, for many people the distance across the tip of their smallest finger is about 1 centimeter.

Now you are working with area, so try to find personal references for area units.
Spend some time searching through your workspace or classroom to find common objects that have areas of 1 square inch, 1 square foot, 1 square yard, 1 square centimeter, and 1 square meter. The areas do not have to be exact, but they should be reasonable estimates. Ask a friend to look for references with you. Try to find more than one reference for each measure.

Personal References for Common Units of Area

Unit	My Personal References
1 square inch $\left(1\right.$ in. $\left.^{2}\right)$	
1 square foot $\left(1 \mathrm{ft}^{2}\right)$	
1 square yard $\left(1 \mathrm{yd}^{2}\right)$	
1 square centimeter $_{\left(1 \mathrm{~cm}^{2}\right)}$	
$\left.1 \mathrm{square}^{2}\right)$ $\left(1 \mathrm{~m}^{2}\right)$	

Finding Areas of Nonrectangular Figures

In the previous lesson, you calculated the areas of rectangular figures using two different methods.

- You counted the total number of unit squares and parts of unit squares that fit neatly inside the figure.

- You used the formula $A=b * h$, where the letter A stands for area, the letter b for the length of the base, and the letter h for the height.

However, many times you will need to find the area of a figure that is not a rectangle. Unit squares will not fit neatly inside the figure, and you won't be able to use the formula for the area of a rectangle.

Working with a partner, think of a way to find the area of each of the figures below.

1. What is the area of triangle $A B C$?
\qquad

2. What is the area of triangle $X Y Z$?
\qquad

3. What is the area of parallelogram GRAM?

Areas of Triangles and Parallelograms

Use the rectangle method to find the area of each triangle and parallelogram below.

Math Boxes 9.5

1. Plot and label the ordered number pairs on the grid.

M: $(2,5)$
$N:(-2,1)$
O: $(-3,-4)$
P: $(-4,3)$
Q: $(6,-2)$

2. Ms. Barrie's fifth graders collected information on favorite board games.

Complete the table and make a circle graph of the data.

Favorite Games	Number of Students	Percent of Class
Monopoly $^{\circledR}$	18	
Risk $^{\circledR}$	8	
Life $^{\circledR}$	6	
Stratego $^{\circledR}$	6	
Clue $^{\circledR}$	12	
Total		

3. Add the fractions.
a. $\frac{1}{3}+\frac{1}{6}=$ \qquad
b. $\frac{3}{6}+\frac{1}{3}=$ \qquad
c. $\frac{2}{3}+\frac{2}{12}=$ \qquad
d. $\frac{5}{6}+\frac{1}{12}=$ \qquad
4. Write a number story for 385 / 25 and solve it.
\qquad
\qquad
\qquad

Answer: \qquad $\stackrel{S R B}{211}$

The Rectangle Method

Finding Areas of Triangles and Parallelograms

1. Fill in the table. All figures are shown on journal page 318.

	Area	base	height	base * height
Triangles				
A	$3 \mathrm{~cm}^{2}$	3 cm	2 cm	$6 \mathrm{~cm}^{2}$
B	$\ldots \mathrm{cm}^{2}$	$\ldots \mathrm{cm}$	$\ldots \mathrm{cm}$	$\ldots \mathrm{cm}^{2}$
C	$\ldots \mathrm{cm}^{2}$	\ldots cm	$\ldots \mathrm{cm}$	$\ldots \mathrm{cm}^{2}$
D	$\ldots \mathrm{cm}^{2}$	$\longrightarrow \mathrm{cm}$	$\ldots \mathrm{cm}$	$\ldots \mathrm{cm}^{2}$
E	$\ldots \mathrm{cm}^{2}$	3 cm	4 cm	$\ldots \mathrm{cm}^{2}$
F	$\ldots \mathrm{cm}^{2}$	$\ldots \mathrm{cm}$	$\ldots \mathrm{cm}$	$\ldots \mathrm{cm}^{2}$

Parallelograms

G	$6 \mathrm{~cm}^{2}$	3 cm	2 cm	$6 \mathrm{~cm}^{2}$
H	$\ldots \mathrm{cm}^{2}$	\ldots cm	\ldots cm	$\square \mathrm{cm}^{2}$
I	$\ldots \mathrm{cm}^{2}$	$\ldots \mathrm{cm}$	2 cm	$\ldots \mathrm{cm}^{2}$
J	$\ldots \mathrm{cm}^{2}$	$\ldots \mathrm{cm}$	_ cm	$\square \mathrm{cm}^{2}$

2. Examine the results of Figures $A-F$. Propose a formula for the area of a triangle as an equation and as a word sentence. Discuss it with others.

Area of a triangle $=$ \qquad
\qquad
3. Examine the results of Figures G-J. Propose a formula for the area of a parallelogram as an equation and as a word sentence. Discuss it with others.

Area of a parallelogram $=$ \qquad
\qquad
\qquad

Defining Base and Height

Study the figures below. Then write definitions for the words base and height.

base:
\qquad
\qquad
height:
\qquad
\qquad
\qquad

Math Boxes 9.6

1. Solve.

> Solution
a. $49 / e=7$
b. $240=8 * t$
c. $r=640 / 8$
d. $a=187-38$
e. $c-705=428$ \qquad

2. Trace an isosceles triangle using your Geometry Template.

3. If the trapezoid on your Geometry Template is worth 1, what is the value of each shape below?
a.

b.

c.

Whole

trapezoid
4. Multiply.
a. $\frac{3}{8} * \frac{7}{9}=$ \qquad
b. $\frac{5}{7} * \frac{6}{11}=$ \qquad
c. $1 \frac{3}{4} * 3 \frac{2}{5}=$ \qquad
d. $2 \frac{7}{6} * 1 \frac{4}{5}=$ \qquad
e. $\frac{26}{4} * \frac{8}{6}=$ \qquad
5. Circle the fractions and mixed numbers that are less than 3.5.
$-\frac{7}{2}$
$\frac{18}{4}$
$2 \frac{5}{3}$
$\frac{29}{8}$
$3 \frac{4}{9}$

Earth's Water Surface

Math Message

Percent of Earth's surface that is covered by water:
My estimate: \qquad

A Sampling Experiment

My location is at latitude \qquad and longitude \qquad .

My location is on land water. (Circle one.)

What fraction of the class has a water location? \qquad

Percent of Earth's surface that is covered by water:
My class's estimate: \qquad

Follow-Up

Your teacher can tell you the actual percent of Earth's surface that is covered by water, or you can look it up in a reference book.

Percent of Earth's surface that is covered by water:
Actual figure: \qquad

How does your class's estimate compare to the actual figure?
\qquad
\qquad
Note: This method of sampling usually gives results that are close to the actual value. However, it sometimes gives results that are very different.

Estimation Challenge: Area

What is the ground area of your school? In other words, what area of land is taken up by the ground floor?

Work alone or with a partner to come up with an estimation plan. How can you estimate the ground area of your school without measuring it with a tape measure? Discuss your ideas with your classmates.

My estimation plan:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

My best estimate:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How accurate is your estimate? What range of areas might the actual area fall in?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Four-4s Problem

Using only four 4s and any operation on your calculator, create expressions for values from 1 through 100. Do not use any other numbers except for the ones listed in the rules below. You do not need to find an expression for every number. Some are quite difficult. Try to find as many as you can today, but keep working when you have free time. The rules are listed below:

- You must use four 4s in every expression.
- You can use two 4 s to create 44 or $\frac{4}{4}$. You can use three 4 s to create 444 .
- You may use 4^{0}. $\left(4^{0}=1\right)$
- You may use $\sqrt{4} \cdot(\sqrt{4}=2)$
- You may use 4 ! (four factorial). $(4!=4 * 3 * 2 * 1=24)$

Use parentheses as needed so that it is very clear what is to be done and in what order. Examples of expressions for some numbers are shown below.

The Four-4s Problem (cont.)

$60=$ \qquad
$61=$ \qquad
$62=$ \qquad
$63=$ \qquad
$64=$ \qquad
$65=$
$66=$ \qquad
$67=$ \qquad
$68=$ \qquad
$69=$ \qquad
$70=$ \qquad
$71=$ \qquad
$72=$ \qquad
$73=$ \qquad
$74=$ \qquad
$75=$ \qquad
$76=$ \qquad
$77=$
$78=$
$79=$ \qquad
$80=$ \qquad
$81=$ \qquad
$82=$ \qquad
$83=$ \qquad
$84=$ \qquad

The Four-4s Problem (cont.)

$85=\square$
$86=\square$
$87=\square$
$88=\square$
$89=\square$
$90=\square$
$91=\square$
$92=$
$93=$

$$
\begin{aligned}
& 94=\square \\
& 95=\square \\
& 96=\square \\
& 97=\square \\
& 98= \\
& 99= \\
& 100= \\
& \\
& \hline
\end{aligned}
$$

Place-Value Magic

If you follow the steps below, the results will always be 1,089 .
Step 1 Pick any 3-digit number that has different digits in the ones place and the hundreds place.
Step 2 Reverse the digits.
Step 3 Find the difference between the number in Step 1 and the number in Step 2.
Step 4 Reverse the digits of your difference in Step 3.
Step 5 Find the sum of the numbers in Step 3 and Step 4.
Your sum is 1,089 .

Example

Step 1427
Step 2724
Step $3724-427=297$
Step 4792
Step $5792+297=1,089$
Can you figure out why this works?

Math Boxes 9.7

1. a. Which has the greater area, a 3-ft-by-2-ft rectangle or a triangle with base 3 ft and height 5 ft ?
b. Which has the greater area, a triangle with base 10 cm and height 4 cm or a parallelogram with base 5 cm and height 6 cm ?
\qquad
2. Subtract. Do not use a calculator.
a. $10-(-2)=$ \qquad
b. $5-8=$ \qquad
c. $15-(-5)=$ \qquad
d. $-15-(-5)=$ \qquad
e. $-4-7=$ \qquad

3. Use a calculator to complete the table. (Round the decimals to the nearest hundredth.)

Fraction	Decimal	Percent
$\frac{3}{7}$		
$\frac{10}{11}$		
$\frac{8}{15}$		
$\frac{7}{9}$		
$\frac{8}{14}$		

Area of a rectangle: $A=b * h$
Area of a triangle: $A=\frac{1}{2} * b * h$ Area of a parallelogram: $A=b * h$

3. Write $>$ or $<$.
a. $0.75 \longrightarrow \frac{8}{9}$
b. $0.2=\frac{1}{6}$
c. $\frac{3}{7} \longrightarrow \frac{4}{8}$
d. $\frac{5}{9} \longrightarrow 0.9$
e. $\frac{6}{11} \longrightarrow \frac{7}{12}$
5. Solve the following problems.
a. If there are 6 counters in $\frac{1}{2}$ of a set, how many are there in the whole set?
\qquad counters
b. If there are 9 counters in $\frac{3}{4}$ of a set, how many are there in the whole set?
\qquad counters
c. If there are 15 counters in the whole set, how many are there in $\frac{2}{3}$ of the set?
\qquad

Rectangular Prisms

A rectangular prism is a geometric solid enclosed by six flat surfaces formed by rectangles. If each of the six rectangles is also a square, then the prism is a cube. The flat surfaces are called faces of the prism.

Bricks, paperback books, and most boxes are rectangular prisms. Dice and sugar cubes are examples of cubes.
Here are three different views of the same rectangular prism.

1. Study the figures above. Write your own definitions for base and height.

Base of a rectangular prism: \qquad

Height of a rectangular prism: \qquad
\qquad

Examine the patterns on Activity Sheet 7. These patterns will be used to construct open boxes-boxes that have no tops. Try to figure out how many centimeter cubes are needed to fill each box to the top. Do not cut out the patterns yet.
2. I think that \qquad centimeter cubes are needed to fill Box A to the top.
3. I think that \qquad centimeter cubes are needed to fill Box B to the top.

Volumes of Rectangular Prisms

Write the formula for the volume of a rectangular prism.
B is the area of the base.
h is the height from that base.

V is the volume of the prism.

Find the volume of each rectangular prism below.
1.

4 in.
2.

$V=$ \qquad
$V=$ \qquad
3.

7 cm
$V=$ \qquad
4.

$V=$ \qquad
5.

6.

$$
V=\frac{}{\text { (unit) }}
$$

A Mental Calculation Strategy

When you are multiplying mentally, it is sometimes helpful to double one factor and halve the other factor.

Example $145 * 12=$?
Step 1 Double 45 and halve 12: $45 * 12=90 * 6$.
Step 2 Multiply 90 and 6: $90 * 6=540$.

Example $218 * 15=$?
Step 1 Halve 18 and double 15: $18 * 15=9 * 30$.
Step 2 Multiply 9 and 30: $9 * 30=270$.

Example $375 * 28=$?
Step 1 Double 75 to get 150 and halve 28 to get 14 .
Step 2 Double again to get 300 and halve again to get 7 .
Step $375 * 28=300 * 7=2,100$.

Use the doubling and halving strategy to calculate mentally. Solve the problems below.

1. $35 * 14=$ \qquad
2. $16 * 25=$ \qquad
New number sentence:
3. $18 * 35=$ \qquad
New number sentence:
\qquad
4. $14 * 55=$ \qquad
New number sentence:
\qquad
5. $15 * 44=$ \qquad
New number sentence:
\qquad
6. $75 * 24=$ \qquad
New number sentence:

New number sentence:

Math Boxes 9.8

1. Plot and label the ordered number pairs on the grid.
$E:(-2,5)$
F: $(3,4)$
$G:(-2,-4)$
$H:(-1,0)$
I: $(5,-1)$
$J:(4,4)$

2. Mr. Carroll's class collected autumn leaves and sorted them by color. The class had 24 yellow leaves, 17 green leaves, 37 red leaves, 8 orange leaves, and 14 brown leaves. Make a circle graph of the data.
(title)

3. Add the fractions.
a. $\frac{1}{4}+\frac{1}{6}=$ \qquad
b. $\frac{3}{3}+\frac{1}{12}=$ \qquad
c. $\frac{2}{12}+\frac{2}{4}=$ \qquad
d. $\frac{5}{12}+\frac{2}{3}=$ \qquad
4. Write a number story for 185 / 6 and solve it.
\qquad
\qquad
\qquad

Answer: \qquad

Volume of Prisms

The volume V of any prism can be found with the formula $V=B * h$, where B is the area of the base of the prism, and h is the height of the prism for that base.

Find the volume of each prism.

Volume $=$ \qquad cm^{3}
3.

Volume $=$ \qquad cm^{3}

Volume $=$ \qquad ft^{3}
2.

Volume $=$ \qquad cm^{3}
4.

Volume $=$ \qquad in. ${ }^{3}$
6.

Volume $=$ \qquad cm^{3}

Date

Volume of Prisms (cont.)

7.

Volume $=$ \qquad cm^{3}
9.

$$
\text { Volume }=
$$

\qquad in. ${ }^{3}$
11.

Volume $=$ \qquad in. ${ }^{3}$
8.

Volume $=$ \qquad cm^{3}
10.

$$
\text { Volume }=\ldots \mathrm{cm}^{3}
$$

12.

$$
\text { Volume }=\ldots \mathrm{m}^{3}
$$

Math Boxes 9.9

1. Solve.

Solution
a. $8 * d=80$
b. $5,500=55 * t$
c. $r-79=180$
d. $t / 9=7$
e. $217+m=300$
\qquad
\qquad
\qquad
\qquad
\qquad
2. Circle the scalene triangles.

3. If the hexagon on your Geometry Template represents 3 , what is the value of each shape or group of shapes below?

a.

b.

c.

d.

e.

4. Multiply.
a. $\frac{8}{11} * \frac{9}{10}=$ \qquad
b. $1 \frac{5}{6} * 3 \frac{7}{8}=$ \qquad
c. $2 \frac{3}{4} * 2 \frac{9}{5}=$ \qquad
d. $\frac{24}{5} * \frac{7}{3}=$ \qquad
e. $5 \frac{1}{7} * 4 \frac{1}{6}=$ \qquad

Units of Volume and Capacity

In the metric system, units of length, volume, capacity, and weight are related.

- The cubic centimeter $\left(\mathrm{cm}^{3}\right)$ is a metric unit of volume.
- The liter (L) and milliliter (mL) are units of capacity.

1. Complete.
a. 1 liter (L) = \qquad milliliters (mL).
b. There are \qquad cubic centimeters $\left(\mathrm{cm}^{3}\right)$ in 1 liter.
c. So $1 \mathrm{~cm}^{3}=$ \qquad mL .
2. The cube in the diagram has sides 5 cm long.

a. What is the volume of the cube?
\qquad cm^{3}
b. If the cube were filled with water, how many milliliters would it hold?
\qquad mL
3. a. What is the volume of the rectangular prism in the drawing?
\qquad cm^{3}
10 cm
b. If the prism were filled with water, how many milliliters would it hold?
\qquad mL
c. That is what fraction of a liter?
\qquad L

Complete.
4. $2 L=$ \qquad mL
5. $350 \mathrm{~cm}^{3}=$ \qquad mL
6. $1,500 \mathrm{~mL}=$ \qquad L

Units of Volume and Capacity (cont.)

7. One liter of water weighs about 1 kilogram (kg).

If the tank in the diagram above is filled with water, about how much will the water weigh? \qquad kg

In the U.S. customary system, units of length and capacity are not closely related. Larger units of capacity are multiples of smaller units.

- $1 \operatorname{cup}(c)=8$ fluid ounces (fl oz)
- 1 pint (pt) $=2$ cups (c)
- 1 quart (qt) $=2$ pints (pt)
- 1 gallon (gal) $=4$ quarts (qt)

8. a. 1 gallon $=$ \qquad quarts
b. 1 gallon = \qquad pints
9. a. 2 quarts $=$ \qquad pints
b. 2 quarts $=$ \qquad fluid ounces
10. Sometimes it is helpful to know that 1 liter is a little more than 1 quart. In the United States, gasoline is sold by the gallon. If you travel in Canada or Mexico, you will find that gasoline is sold by the liter. Is 1 gallon of gasoline more or less than 4 liters of gasoline?

Open Boxes

What are the dimensions of an open box-having the greatest possible volume-that can be made out of a single sheet of centimeter grid paper?

1. Use centimeter grid paper to experiment until you discover a pattern. Record your results in the table below.

height of box	length of base	width of base	Volume of box
$/ \mathrm{cm}$	20 cm	14 cm	
2 cm			
3 cm			

2. What are the dimensions of the box with the greatest volume?

height of box $=\ldots \mathrm{cm}$	length of base $=\ldots \mathrm{cm}$
width of base $=\ldots \mathrm{cm}$	Volume of box $=\ldots$

Date

Math Boxes 9.10

1. Circle the figure below that has the same area as Figure A.

A

2. Add or subtract. Do not use a calculator.
a. $-22+12=$ \qquad
b. $18-(-4)=$ \qquad
c. $-15-(-8)=$ \qquad
d. $-4+(-17)=$ \qquad
e. $-6-(-28)=$ \qquad
3. Use a calculator to complete the table.
(Round the decimals to the nearest hundredth.)

Fraction	Decimal	Percent
$\frac{11}{12}$		
$\frac{5}{7}$		
$\frac{14}{15}$		
$\frac{5}{6}$		
$\frac{2}{9}$		

3. Write $>$ or $<$.
a. $\frac{7}{8} \quad \frac{9}{10}$
b. $\frac{4}{5} \longrightarrow 0.89$
c. $\frac{2}{3} \longrightarrow \frac{5}{8}$
d. 0.37 $\frac{2}{5}$
e. $\frac{9}{6}$
1.05
4. Solve.
a. $\frac{1}{3}$ of $27=$ \qquad
b. $\frac{1}{8}$ of $40=$ \qquad
c. $\frac{1}{5}$ of $100=$ \qquad
d. $\frac{2}{5}$ of $100=$ \qquad
e. $\frac{1}{4}$ of $60=$ \qquad

Time to Reflect

1. How would you explain to someone the difference between area and volume?
\qquad
\qquad
\qquad
\qquad
2. Describe at least three situations where you would want to find the area of something.
\qquad
\qquad
\qquad
\qquad
3. Describe at least one situation where you would want to find the volume of something.
\qquad
\qquad
\qquad
\qquad
4. Explain the difference between plotting the point $(3,5)$ and plotting the point $(5,3)$.
\qquad
\qquad
\qquad
\qquad

Math Boxes 9.11

1. Plot and label the ordered number pairs on the grid.
$U:(-6,0)$
$V:(2,-5)$
W: $(-4,-3)$
$X:(4,3)$
$Y:(0,-2)$
$Z:(-3,5)$

2. Complete the "What's My Rule?" table and state the rule.

Rule: \qquad

in	out
4	9
7	15
11	23
	19
6	

4. Explain how you could find the area of the rectangle below.

5. If the radius of a circle is 2.5 inches, what is its diameter?
\qquad

Explain. \qquad
\qquad
\qquad
5. Solve.

Solution
a. $\frac{3}{8}=\frac{a}{40}$ \qquad
b. $-80+c=100$
c. $m * 25=400$
d. $s-110=-20$
e. $144 / z=12$ \qquad

Math Boxes 10.1

1. Measure the base and height of the triangle below to the nearest centimeter.

The base is about \qquad cm.

The height is about \qquad cm .

Find the area of the triangle to the nearest square centimeter.

$$
\text { Area }=\frac{1}{2} * b * h
$$

The area is about \qquad cm^{2}.

2. Insert parentheses to make each number sentence true.
a. $7 * 2+18=140$
b. $98=18 / 9 * 49$
c. $27=45 / 5 * 3$
d. $6 * 7-6=6$
e. 45 / $5 * 3=3$
3. Name a number between each pair of numbers.
a. 4.2 and 4.25
b. $\frac{3}{8}$ and $\frac{3}{7}$
c. -12 and -11 \qquad d. $\frac{1}{10}$ and 0.15
e. $\frac{2}{3}$ and $\frac{5}{6}$
f. $\frac{7}{16}$ and $\frac{4}{5}$
\qquad
\qquad
\qquad
\qquad
4. Estimate the answer for each problem. Then solve the problem.

Estimate Solution
a. $302 * 57$
b. $599 * 9$
c. $701 * 97$ \qquad
\qquad
d. $498 * 501$ \qquad
\qquad

Pan-Balance Problems

Math Message

1. How would you use a pan balance to weigh an object?
\qquad
\qquad
\qquad
\qquad
\qquad

Solve these pan-balance problems. In each figure, the two pans are in perfect balance.
2. One cube weighs as much as \qquad marbles.

3. One cube weighs as much as \qquad oranges.

4. One whole orange weighs as much as \qquad grapes.

5. One block weighs as much as \qquad marbles.

Check your answers. The sum of the answers to Problems $2-5$ should equal $39 \frac{1}{2}$.

Pan-Balance Problems (cont.)

6. One \square weighs
as much as \qquad $\triangle \mathrm{s}$.

7. One \square weighs as much as \qquad marbles.

8. One x weighs
as much as \qquad balls.

9. One u weighs
as much as \qquad vs.

Check your answers: The sum of the answers to Problems 6-9 should equal 10.

Challenge

10. An empty bottle weighs as much as 6 marbles.
a. The content of a full bottle weighs
 as much as \qquad marbles.
b. A full bottle weighs as much as \qquad marbles.

Housing Boom

Some might say that Parker Brothers (the games company) has built more houses than any other developer in the world. Since 1935, the company has "built" more than 3 billion houses for its Monopoly ${ }^{\circledR}$ game.

Source: Games Magazine

More Pan-Balance Problems

Solve these problems, using both pan balances in each problem. In each problem, the pans are in perfect balance. The weights of objects, such as blocks, balls, marbles, and coins, may be different from problem to problem, but are consistent within each problem.

One block weighs
as much as \qquad marbles.

One block weighs as much as \qquad marbles.

One block weighs as much as \qquad marbles.
4.

One block weighs as much as \qquad marbles.

One ball weighs
as much as \qquad marbles.

One coin weighs as much as \qquad marbles.

One ball weighs as much as \qquad marbles.

One ball weighs
as much as \qquad marbles.

More Pan-Balance Problems (cont.)

5.

One coin weighs as much as \qquad clips.
6.

One can weighs as much as \qquad blocks.
7.

Oneweighs as much as \qquad marbles.

Each can weighs B ounces.
$B=$ \qquad ounces

One block weighs as much as \qquad clips.

One doughnut weighs as much as \qquad blocks.

One \triangle weighs as much as \qquad marbles.

Each cube weighs A ounces.
$A=$ \qquad ounces

More Pan-Balance Problems (cont.)

9.

One \square weighs
as much as \qquad marbles. marb.

One \triangle weighs
as much as \qquad marbles.
10.

y weighs
as much as \qquad marbles.

x weighs as much as \qquad marbles.
11.

If the cup is full, the coffee in the cup weighs as much as \qquad marbles.

If the cup is full, the coffee plus the cup weighs as much as \qquad marbles.
12. Two pens weigh as much as one compass. One pen and one compass together weigh 45 grams.

Complete the pan-balance sketches below. Find the weight of one pen and of one compass.

One pen weighs \qquad grams.

One compass weighs \qquad grams.

Represent Number Stories

Circle each expression that correctly represents the information in the story. (There may be more than one answer.)

1. Melissa baked 5 trays with 12 cookies each. She sold 3 trays of 12 cookies.

Number of cookies sold:

$(5-3) * 12$
$3 * 12$
$5 * 12$
2. Jonas was stocking up on soda for the family. He bought 8 six-packs of soda. His mom bought 3 more six-packs.

Total number of cans of soda:
$(8 * 3)+6$
$(8 * 3)+(8 * 6)$
$6 *(8+3)$
3. Jenny bought 6 envelopes for 14 cents each and 6 stamps for 34 cents each.

Amount of money spent:
$(6+6) *(14+34)$
$(6 * 14)+(6 * 34)$
$6 *(14+34)$
4. Monty had 8 packages of 12 pencils when the year started. He used 3 packages of 12 during the school year.

Number of pencils left:
$(8-3) * 12$
$(8 * 12)-(3 * 12)$
$(8+3) * 12$
5. Make up one of your own.
\qquad
\qquad
\qquad
Your number expression: \qquad

Date
Time

Math Boxes 10.2

1. Draw a figure on the grid that has a perimeter of 32 units.

1 unit

3. a. Make up a set of 15 numbers that has the following landmarks.

Maximum: 152
Range: 25
Mode: 139
Median: 142
2. Solve.

Solution

a. $\quad \frac{5}{9}=\frac{x}{18}$
b. $\frac{8}{25}=\frac{40}{y}$
c. $\frac{6}{14}=\frac{w}{49}$
d. $\frac{28}{z}=\frac{7}{9}$
e. $\frac{44}{77}=\frac{4}{v}$
b. Make a stem-and-leaf plot of the data.

Stems $(10 \mathrm{~s})$	Leaves $(1 \mathrm{~s})$

5. Divide or multiply mentally.
a. $246 / 6=$ \qquad
b. $108 / 4=$ \qquad
c. $299 * 15=$ \qquad
d. $35 * 22=$ \qquad
e. $50 * 27=$ \qquad

Math Boxes 10.3

1. Find the area and perimeter of the rectangle.

Area $=$ \qquad
Perimeter $=$ \qquad
2. Insert parentheses to make each number sentence true.
a. $6+8 * 10=140$
b. $21=42 / 6-4$
c. $7 * 7+2=63$
d. $3 * 15-3=36$
e. 42 / $6-4=3$
3. Name a number between each pair of numbers.
a. -1.30 and -1.20 \qquad b. 8.05 and 8.10
c. -0.26 and -0.25 \qquad d. $\frac{1}{3}$ and $\frac{7}{8}$
e. $\frac{1}{4}$ and 0.3
f. 0.2 and $\frac{2}{9}$
4. Estimate the answer for each problem. Then solve the problem.

$$
\text { Estimate } \quad \text { Solution }
$$

a. $60.3 * 71$ \qquad
\qquad
b. $29 * 0.8$ \qquad
\qquad
c. $48 * 2.02$ \qquad
\qquad
d. $2.2 * 550$ \qquad
\qquad

Algebraic Expressions

Complete each statement below with an algebraic expression, using the suggested variable. The first problem has been done for you.

1. If Beth's allowance is $\$ 2.50$ more than Ann's, then Beth's allowance is

$$
D+\$ 2.50
$$

\qquad .
2. If John gets a raise of $\$ 5$ per week, then his salary is
\$ \qquad .
3. If Ali's grandfather is 50 years older than Ali, then Ali is

Ann's allowance is D dollars.

1st Hometown Bank 141
Pay to the order of: John Amount: S dollars The Boss

John's salary is S dollars per week.

Ali's grandfather
 is G years old.

A basket of potatoes weighs P pounds.

Algebraic Expressions (cont.)

5. If a submarine dives 150 feet, then it will be traveling at a depth
of \qquad feet.
6. The floor is divided up for gym classes into 5 equal-sized areas. Each class has a playing area of

\qquad ft^{2}.
7. The charge for a book that is D days overdue is
\qquad cents.
8. If Kevin spends $\frac{2}{3}$ of his allowance on a book, then he has
\qquad dollars left.

A library charges 10 cents for each overdue book. It adds an additional charge of 5 cents per day for each overdue book.
The gym floor has an area of A square feet.

"What's My Rule?"

1. a. State in words the rule for the "What's My Rule?" table at the right.
\qquad
\qquad
\qquad
\qquad
b. Circle the number sentence that describes the rule.

$$
Y=X / 5 \quad Y=X-4 \quad Y=4-X
$$

2. a. State in words the rule for the "What's My Rule?" table at the right.
\qquad
\qquad
\qquad
\qquad
b. Circle the number sentence that describes the rule.
$Z=Q+2$
$Z=2 * Q$
$Z=\frac{1}{2} Q * 1$
3. a. State in words the rule for the "What's My Rule?" table at the right.
\qquad
\qquad
\qquad
\qquad
b. Circle the number sentence that describes the rule.

$$
g=2 * t \quad t=2 * g \quad t=4 * g
$$

Multiplication and Division Practice

Solve. Show your work in the space below the problems.

1. $384 * 1.5=$ \qquad
2. $50.3 * 89=$ \qquad
3. $824 * 75=$
4. $\frac{843}{7}=$ \qquad
5. $70.4 / 8=$
6. $1,435 / 0.5=$

Speed and Distance

Math Message

1. A plane travels at a speed of 480 miles per hour. At that rate, how many miles will it travel in 1 minute? Write a number model to show what you did to solve the problem.

Number model: \qquad Distance per minute: \qquad miles

Rule for Distance Traveled

2. For an airplane flying at 8 miles per minute (480 mph), you can use the following rule to calculate the distance traveled for any number of minutes:

$$
\begin{aligned}
\text { Distance traveled } & =8 * \text { number of minutes } \\
& \text { or } \\
d & =8 * t
\end{aligned}
$$

where d stands for the distance traveled and t for the time of travel, in minutes.
For example, after 1 minute, the plane will have traveled 8 miles $(8 * 1)$.
After 2 minutes, it will have traveled 16 miles ($8 * 2$).
3. Use the rule $d=8 * t$ to complete the table at the right.

Time (min) (\boldsymbol{t})	Distance (mi) $(\mathbf{8} * \boldsymbol{t})$
1	8
2	16
3	
4	
5	
6	
7	
8	
10	

Speed and Distance (cont.)

4. Complete the graph using the data in the table on page 354 . Then connect the dots.

Use your graph to answer the following questions:
5. How far would the plane travel in $1 \frac{1}{2}$ minutes?
(unit)
6. How many miles would the plane travel in 5 minutes 24 seconds (5.4 minutes)?
7. How long would it take the plane to travel 60 miles?

Representing Rates

Complete each table below. Then graph the data and connect the points.

1. a. Andy earns $\$ 8$ per hour. Rule: Earnings $=\$ 8 *$ number of hours worked

Time (hr) $\mathbf{(h)}$	Earnings (\$) $(8 * \boldsymbol{h})$
1	
2	
3	40
7	

b. Plot a point to show Andy's earnings for $5 \frac{1}{2}$ hours. How much would he earn?

2. a. Red peppers cost $\$ 2.50$ a pound. Rule: Cost $=\$ 2.50 *$ number of pounds

Weight (lb) (w)	Cost (\$) $(2.50 * w)$
1	
2	
3	15.00
12	

b. Plot a point to show the cost of 8 pounds. How much would 8 pounds of red peppers cost?

Representing Rates (cont.)

3. a. Frank types an average of 45 words a minute.

Rule: Words typed $=45 *$ number of minutes

Time (min) (\boldsymbol{t})	Words $(45 * \boldsymbol{t})$
1	
2	
3	225
6	

b. Plot a point to show the number of words Frank types in 4 minutes. How many words is that?
\qquad
4. a. Joan's car uses 1 gallon of gasoline every 28 miles.

Rule: Distance $=28 *$ number of gallons

Gasoline (gal) (\mathbf{g})	Distance (mi) $(\mathbf{2 8} * \boldsymbol{g})$
1	
2	
3	140
$5 \frac{1}{2}$	

b. Plot a point to show how far the car would travel on 1.4 gallons of gasoline. How many miles would it go?

Area and Volume Review

Area and Volume Formulas

Area of rectangles and parallelograms

$A=b * h$, where A is the area, b is the length of the base, and h is the width or height

Area of triangles

$A=\frac{1}{2} * b * h$, where A is the area, b is the length of the base, and h is the height
Volume of prisms
$V=B * h$, where B is the area of the base and h is the height

Find the area of these figures.

Area: \qquad

Find the volume of these solids.
3.

Volume: \qquad
5.

Volume: \qquad

Math Boxes 10.4

1. Draw a rectangle whose perimeter is the same as the perimeter of the rectangle shown but whose sides are not the same length as those shown.

What is the area of the figure you drew?
2. Solve.

Solution

a. $\frac{m}{10}=\frac{45}{50}$ \qquad
b. $\frac{56}{64}=\frac{7}{n}$
c. $\frac{k}{48}=\frac{3}{8}$
d. $\frac{4}{30}=\frac{12}{p}$ \qquad
e. $\frac{2}{18}=\frac{a}{180}$
3. Make a stem-and-leaf plot of the following numbers:

Stems $(10 \mathrm{~s})$	Leaves $(1 \mathrm{~s})$

Find the landmarks.
Mode: \qquad
Median: \qquad
Range: \qquad
4. Draw an isosceles triangle.

Write a definition of an isosceles triangle.
\qquad
\qquad
\qquad
5. Divide or multiply mentally.
a. $495 / 5=$ \qquad
b. $199 * 36=$ \qquad
c. $63 * 500=$ \qquad
d. $25 * 96 * 4=$ \qquad
e. $843 / 3=$ \qquad

Predicting When Old Faithful Will Erupt Next

Old Faithful Geyser in Yellowstone National Park is one of nature's most impressive sights. Yellowstone has 200 geysers and thousands of hot springs, mud pots, steam vents, and other "hot spots"-more than any other place on Earth. Old Faithful is not the largest or tallest geyser in Yellowstone, but it is the most dependable geyser. Using the length of time of an eruption, park rangers can predict when the next eruption will begin.

Old Faithful erupts at regular intervals that are predictable. If you time the length of one eruption, you can predict about how long you must wait until the next eruption.
Use this formula:
Waiting time $=(10 *$ (length of eruption) $)+30$ minutes

$$
\begin{aligned}
W & =(10 * E)+30 \\
\text { or } W & =10 E+30
\end{aligned}
$$

All times are in minutes.

1. Use the formula to complete the table below.

Length of Eruption $(\mathbf{m i n})$ (E)	Waiting Time to Next Eruption $(\mathbf{m i n})$ $((10 * E)+30)$
2 min	50 min
3 min	\min
4 min	\min
5 min	\min
1 min	\min
$2 \frac{1}{2} \mathrm{~min}$	\min
3 min 15 sec	min

2. Graph the data from the table. One number pair has been plotted for you.

3. It's 8:30 A.m., and Old Faithful has just finished a 4-minute eruption. About when will it erupt next?
4. The average time between eruptions of Old Faithful is about 75 minutes. So the average length of an eruption is about how many minutes?

More Pan-Balance Practice

Solve these pan-balance problems. In each figure, the two pans are in perfect balance.

One orange weighs as much as \qquad triangle.

One doughnut weighs as much as \qquad Xs.
5. $\frac{\text { 000000000, }}{\square, ~ A A A \triangle \Delta \Delta \Delta}$

One triangle weighs as much as \qquad paper clips.

Explain how you found your answer. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

One X weighs as much as \qquad M.

Math Boxes 10.5

1. Use your Geometry Template to trace three kinds of triangles in the space below. Under each triangle, write what kind of triangle it is.
2. Add or subtract.
a. $-7+(-3)=$ \qquad
b. $5-(-8)=$ \qquad
c. $-17+10=$
d. $-15-15=$ \qquad
e. $3+(-20)=$ \qquad
3. Add or subtract.
a. $\frac{4}{5}+1 \frac{3}{8}=$ \qquad
b. $1 \frac{2}{4}-\frac{4}{5}=$ \qquad
c. $6 \frac{3}{7}-3 \frac{1}{3}=$ \qquad
d. \qquad $=4 \frac{2}{9}+\frac{23}{6}$
4. The table shows how Robert spent his allowance for the month of April. Complete the table and make a circle graph of the data.

Type of Expense	Amount Spent	Percent of Allowance
Snacks	$\$ 2.50$	
Movie	$\$ 5.50$	
Gum	$\$ 0.50$	
Baseball Cards	$\$ 1.50$	
Total		

Math Boxes 10.6

1. Find the area of the parallelogram.

Area of a parallelogram: $A=b * h$

Area: \qquad square units

3. Insert $>$ or $<$.
a. $\frac{9}{14}$ \qquad $\frac{10}{3}$
b. $\frac{6}{21}$ \qquad $\frac{2}{6}$
c. $\frac{4}{11}$ \qquad $\frac{7}{16}$
d. $\frac{8}{18}$ \qquad $\frac{3}{7}$
e. $\frac{5}{24}$ \qquad $\frac{2}{10}$

2. Solve.
a. $\frac{1}{3}$ of $36=$ \qquad
b. $\frac{2}{5}$ of $75=$ \qquad
c. $\frac{3}{8}$ of $88=$ \qquad
d. $\frac{5}{6}$ of $30=$ \qquad
e. $\frac{2}{7}$ of $28=$ \qquad
4. Complete the "What's My Rule?" table and state the rule.

Rule: \qquad

in	out
8	
	-2
2	-6
0	
	9

5. Solve.
a. $\quad 128.07$
b. $\quad 18.95$
-85.25
c. $\quad 306.85$
$+216.96$
d. 215.29
$\begin{array}{r}+38.75 \\ \hline\end{array}$

Rules, Tables, and Graphs

1. Use the graph below. Find the x - and y-coordinates for each point shown. Then enter the x and y values in the table.

2. Eli is 10 years old and can run an average of 5 yards per second. His sister Sara is 7 and can run an average of 4 yards per second.

Eli and Sara have a 60-yard race. Because Sara is younger, Eli gives her a 10-yard head start.

Complete the table showing the distances Eli and Sara are from the starting line after 1 second, 2 seconds, 3 seconds, and so on.

Use the table to answer the questions below.
a. Who wins the race? \qquad
b. What is the winning time?
c. Who was in the lead during most of the race?

Time (sec)	Distance (yd)	
	Sara	
1	0	10
2		18
3	15	
4		
5		
6		
7		38
8		
9		
10		
11		
12		

Rules, Tables, and Graphs (cont.)

3. Use the grid below to graph the results of the race between Eli and Sara.

4. How many yards apart are Eli and Sara after 7 seconds?
5. Suppose that Eli and Sara race for 75 yards instead of 60 yards.
a. Who would you expect to win?
b. How long would the race last? \qquad
c. How far ahead would the winner be at the finish line?

Running and Walking Graph

Math Message

Rachel, William, and Tamara timed themselves traveling the same distance in different ways. Rachel ran, William walked, and Tamara walked toe-to-heel.

After they timed themselves, they drew a graph.

1. Which line on the graph at the right is for Rachel? \qquad
2. Which line is for William? \qquad
3. Which line is for Tamara? \qquad

Review: Algebraic Expressions

Complete each statement with an algebraic expression.
5. Bill is 5 years older than Rick. If Rick is R years old, then Bill is \qquad years old.
6. Rebecca's piano lesson is one half as long as Lisa's. If Lisa's piano lesson is L minutes long, then Rebecca's is \qquad minutes long.
7. Jamie's dog weighs 3 pounds more than twice the weight of Eddy's dog. If Eddy's dog weighs E pounds, then Jamie's dog weighs \qquad pounds.

Reading Graphs

1. Tom and Alisha run a 200-yard race. Tom has a head start.

a. Who wins the race?
b. By about how much? \qquad
c. Mark the point on the graph where Alisha overtakes Tom.
d. About how many yards does Alisha run before taking the lead? \qquad
e. About how many seconds pass before Alisha takes the lead?
f. Who is ahead after 9 seconds? \qquad
g. By about how much? \qquad
2. Babar is definitely out of shape, but he runs 100 meters as fast as he can.

a. In the first 10 seconds of his run, Babar covers about \qquad meters, and his speed is about $\frac{\square \text { meters }}{10 \text { seconds }}=\frac{\square \text { meters }}{1 \text { second }}$.
b. In the final 10 seconds of his run, Babar covers about \qquad meters, and his speed is about $\frac{\square \text { meters }}{10 \text { seconds }}=\frac{\square \text { meters }}{1 \text { second }}$.

Mystery Graphs

Each of the events described below is represented by one of the following graphs:

Graph A

Graph B

Graph C

Graph D

Graph E

Match each event with its graph.

1. A frozen dinner is removed from the
freezer. It is heated in a microwave oven.
Then it is placed on the table.
Which graph shows the temperature of the dinner at different times?

Graph \qquad
2. Satya runs water into his bathtub. He steps into the tub, sits down, and bathes. He gets out of the tub and drains the water.

Which graph shows the height of water in the tub at different times?

Graph \qquad
3. A baseball is thrown straight up into the air.
a. Which graph shows the height of the ball-from the time it is thrown until the time it hits the ground?

Graph \qquad
b. Which graph shows the speed of the ball at different times?

Graph \qquad

Math Boxes 10.7

1. a. I am a polygon with exactly 4 angles, each of a different size. What shape am I?
\qquad
b. Draw what I look like.
2. List all of the factors for 144.
\qquad
\qquad
\qquad
\square路
3. Mr. Kim's art class asked 50 people each to name their favorite kind of movie. The results are shown in the table. Complete the table and then make a circle graph of the results.

Kind of Movie	Number of People	Percent of Total
Action	23	
Comedy	14	
Romance	2	
Thriller	7	
Mystery	4	
Total		

2. Add or subtract.
a. $20+(-10)=$
b. $-8+(-17)=$
c. $-12-(-12)=$ \qquad
d. $-45+45=$
e. $-31-14=$
3. Add or subtract.
a. $5 \frac{4}{5}-3 \frac{7}{4}=$ \qquad
b. $3 \frac{1}{8}+\frac{16}{6}=$ \qquad
c. \qquad

$$
=2 \frac{4}{9}+3 \frac{7}{3}
$$

d. \qquad $=1 \frac{9}{10}-\frac{15}{8}$

A Problem from the National Assessment

The following problem was in the mathematics section of a 1975 national standardized test.
A square has a perimeter of 12 inches.
What is the area of the square?

1. Your answer: \qquad in. ${ }^{2}$ \square

The table below gives the national results for this problem.

	13-Year-Olds	17-Year-Olds	Young Adults
Correct answer	7%	28%	27%
144 sq inches	12%	19%	25%
48 sq inches	20%	10%	10%
24 sq inches	6%	4%	2%
12 sq inches	4%	3%	3%
6 sq inches	4%	2%	1%
3 sq inches	16%	2%	2%
Other incorrect answers	28%	13%	10%
No answer or "I don't know"		20%	

Explain why many students might have given the following answers:
2. 144 square inches \qquad
\qquad
\qquad
3. 48 square inches \qquad
\qquad
\qquad
\qquad

Ratio of Circumference to Diameter

You are going to explore the relationship between the circumference and the diameter of a circle.

1. Using a metric tape measure, carefully measure the circumference and diameter of a variety of round objects. Measure to the nearest millimeter (one-tenth of a centimeter).
2. Record your data in the first three columns of the table below.

3. In the fourth column, write the ratio of the circumference to the diameter as a fraction.
4. In the fifth column, write the ratio as a decimal. Use your calculator to compute the decimal and round your answer to two decimal places.

			Ratio of Circumference to Diameter	
Object	Circumference (C)	Diameter (d)	Ratio as a Fraction ($\frac{C}{d}$)	Ratio as a Decimal (from calculator)
Coffee cup	252 mm	80 mm	$\frac{252}{80}$	3.15
	$\ldots \mathrm{mm}$	$\ldots \mathrm{mm}$		
	$\ldots \mathrm{mm}$	_ mm		
	\ldots mm	\ldots _ mm		
	$\ldots \mathrm{mm}$	$\ldots \mathrm{mm}$		
	$\ldots \mathrm{mm}$	\ldots mm		

5. What is the median of the circumference to diameter ratios in the last column?
6. The students in your class combined their results in a stem-and-leaf plot. Use that plot to find the class median value for the ratio $\frac{C}{d}$.

Math Boxes 10.8

1. Find the area of the triangle.

Area of a Triangle: $A=\frac{1}{2} * b * h$

Area: \qquad square units
3. Insert $>$ or $<$.
a. $\frac{8}{9} \quad \frac{8}{10}$
b. $\frac{3}{5} \quad \frac{3}{7}$
c. $\frac{6}{7} \longrightarrow \frac{5}{6}$
d. $\frac{7}{12}$ \qquad $\frac{7}{14}$
e. $\frac{9}{11}$ \qquad $\frac{14}{15}$
2. If a set has 48 objects, how many objects are there in
a. $\frac{3}{8}$ of the set? \qquad
b. $\frac{8}{3}$ of the set? \qquad
c. $\frac{5}{6}$ of the set? \qquad
d. $\frac{7}{12}$ of the set? \qquad
e. $\frac{17}{16}$ of the set? \qquad
4. Complete the "What's My Rule?" table and state the rule.

Rule: \qquad

in	out
$\frac{1}{3}$	
	0
$\frac{5}{3}$	4
	2
-2	$\frac{1}{3}$

5. Solve.
a.
b. 24.303

+5.700

c. $\quad 402.03$
-24.70
d. $\quad 590.32$
-465.75

Measuring the Area of a Circle

Math Message

Use the circle at the right to solve Problems 1-4.

1. The diameter of the circle is about \qquad centimeters.
2. The radius of the circle is about \qquad centimeters.

3. The circumference of the circle is about \qquad centimeters.
4. Find the area of this circle by counting squares. About \qquad cm^{2}

Follow-Up

5. What is the median of all the area measurements in your class? \qquad cm^{2}

More Pi, Anyone?

In 1999, Japanese computer scientists claimed a world record when they calculated pi to more than 206,158,430,000 digits on a computer at the University of Tokyo. The work took 13 hours to do and 46 hours to check. If a number with that many digits was printed on one line with 6 digits per centimeter, it would stretch more than 340,000 kilometers, or almost as far as the distance between Earth and the moon.

Source: University of Tokyo

Date

Areas of Circles

Work with a partner. Use the same objects, but make separate measurements so that you can check each other's work.

1. Trace several round objects onto the grid on Math Masters, page 2.
2. Count square centimeters to find the area of each circle.
3. Use a ruler to find the radius of each object. (Remember: The radius is half the diameter.) Record your data in the first three columns of the table below.

Object	Area	Radius	Ratio of Area to Radius Squared		
	(sq cm)	(cm)	as a Fraction $\frac{A}{r^{2}}$	as a Decimal	

4. Find the ratio of the area to the square of the radius for each circle. Write the ratio as a fraction in the fourth column of the table. Then use a calculator to calculate the ratio as a decimal. Round the decimal to two decimal places and write it in the last column.
5. Find the median of the ratios in the last column. \qquad

A Formula for the Area of a Circle

Your class just measured the area and radius of many circles and found that the ratio of the area to the square of the radius is about 3.

This was no coincidence: Mathematicians proved long ago that the ratio of the area of a circle to the square of its radius is always equal to π. This can be written as:

$$
\frac{A}{r^{2}}=\pi
$$

Usually this fact is written in a slightly different form, as a formula for the area of a circle.

The formula for the area of a circle is

$$
A=\pi * r^{2}
$$

where A is the area of a circle and r is its radius.

1. What is the radius of the circle in the Math Message on journal page 373 ? \qquad
2. Use the formula above to calculate the area of that circle. \qquad
3. Is the area you found by counting square centimeters more or less than the area you found by using the formula? \qquad
How much more or less? \qquad
4. Use the formula to find the areas of the circles you traced on Math Masters, page 2.
5. Which do you think is a more accurate way to find the area of a circle, by counting squares or by measuring the radius and using the formula? Explain.
\qquad
\qquad
\qquad
\qquad

Fraction and Percent Multiplication

Complete the following.

1. 30% of 50 is \qquad .
2. 25% of 36 is \qquad .
3. 5% of 150 is \qquad
4. 75% of 12 is \qquad . 5. 80% of 60 is \qquad . 6. 50% of 130 is \qquad

Find the whole.
7. 50% of \qquad is 12 .
8. $\frac{3}{4}$ of \qquad is 21 .
9. 90% of \qquad is 180 .
10. $\frac{5}{6}$ of \qquad is 25 .
11. 20% of \qquad is 19 .
12. $\frac{3}{8}$ of \qquad is 24 .

Multiply.
13. $\frac{1}{2} * \frac{3}{4}=$ \qquad 14. $2 \frac{3}{4} * \frac{3}{5}=$ \qquad 15. $1 \frac{1}{2} * 2 \frac{1}{4}=$ \qquad
16. $\frac{3}{4} * 5=$ \qquad 17. $7 * \frac{4}{5}=$ \qquad 18. $\frac{5}{6} * \frac{1}{5}=$ \qquad

Math Boxes 10.9

1. I am a polygon with exactly 6 angles. What shape am I?

Name an object that has my shape somewhere on it.
\qquad
Do all of my angles have to be the same size? \qquad Explain.
\qquad
3. List all of the factors for 205.
5. Ms. Hopheart's class asked 50 people to name their favorite kind of fruit. The results are shown in the table. Complete the table and then make a circle graph of the results.

Kind of Fruit	Number of People	Percent of Total
Apples	20	
Bananas	12	
Grapes	5	
Oranges	8	
Other	5	
Total	50	

a. $3 \frac{5}{8}-1 \frac{2}{5}=$ \qquad
b. $2 \frac{6}{7}-\frac{9}{4}=$ \qquad
c. \qquad
c. $=\frac{37}{5}+8 \frac{3}{2}$
d. \longrightarrow $=\frac{12}{100}+\frac{25}{4}$
4. Add or subtract.
b. $27-4$
\qquad
[2

$$
\square=\overline{100}+\overline{4}
$$

Time to Reflect

1. Explain to a new student what is special about the number π and what you have used it for.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Look through your journal. Which lesson or lessons were your favorites in this unit? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. Janet wanted to know how long it would take her to drive 525 miles. She was traveling at about 65 miles per hour. Explain how she might solve this problem using a graph, a formula, or a table.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. Find the perimeter of each figure.
a. Perimeter: \qquad

b. Perimeter: \qquad

5. Triangles A and B are partially covered. One of them has an obtuse angle. Which triangle could this be? (Circle A or B.)

Draw what the triangles might look like if the drawings were complete.
2. The area of the cover of the dictionary is about \qquad

4. Find the area of each figure.

Area of a triangle: $A=\frac{1}{2} * b * h$
Area of a parallelogram: $A=b * h$
a. Area:

b. Area:
\qquad

c. Area:

Geometric Solids

Each member of your group should cut out one of the patterns from Math Masters, pages 150-153. Fold the pattern and glue or tape it together. Then add this model to your group's collection of geometric solids.

1. Examine your models of geometric solids.
a. Which solids have all flat surfaces? \qquad
b. Which have no flat surfaces? \qquad
c. Which have both flat and curved surfaces?
d. If you cut the label of a cylindrical can in a straight line perpendicular to the bottom, and then unrolled and flattened the label, what would be the shape of the label?
\qquad
2. Examine your models of polyhedrons.
a. Which polyhedrons have more faces than vertices?
b. Which polyhedrons have the same number of faces and vertices?
\qquad
c. Which polyhedrons have fewer faces than vertices? \qquad
3. Examine your model of a cube.
a. Does the cube have more edges than vertices, the same number of edges as vertices, or fewer edges than vertices?

Is this true for all polyhedrons? \qquad Explain. \qquad
\qquad
b. How many edges of the cube meet at each vertex? \qquad Is this true for all polyhedrons? Explain. \qquad

More Circumference and Area Problems

Circumference and Area of Circles Formulas
 Circumference $=\pi * d \quad$ Area $=\pi * r^{2}$

where d is the diameter and r is the radius of the circle.

Measure the diameter of the circle below to the nearest centimeter. Then use the π key on your calculator to solve these problems. If your calculator doesn't have a π key, enter 3.14 each time you need π. Show answers to the nearest tenth.

1. The diameter of the circle is \qquad cm .
2. The radius of the circle is \qquad cm .
3. The circumference of the circle is \qquad cm.

4. The area of the circle is \qquad cm^{2}.
5. Explain the relationship between the diameter and the circumference. \qquad
\qquad
\qquad
6. Use your Geometry Template to draw a circle that has a diameter of 5 centimeters.
a. Find the area of your circle.

$$
\ldots \mathrm{cm}^{2}
$$

b. Find the circumference of your circle.
\qquad cm
7. Use your Geometry Template to draw a circle that has a radius of 1 inch.
a. Find the area of your circle.
\qquad in. ${ }^{2}$
b. Find the circumference of your circle.
\qquad in.

Math Boxes 11.1

1. Write the prime factorization for 200.

2. If you draw one card from a regular deck of cards, what is the probability of drawing
a. a 4 ? \qquad
b. a face card? \qquad
c. a heart? \qquad
d. an even number?

3. Write an algebraic expression for each of the following statements.
a. Maria is y years old. Sheila is 10 years older than Maria. How old is Sheila?
\qquad
b. Franklin has c miniature cards. Rosie has 4 more cards than twice as many as Franklin has. How many cards does Rosie have? \qquad cards
c. Lucinda goes to sleep-away camp for D days each summer. Rhonda goes to camp for 1 day fewer than half of Lucinda's number of days. For how many days does Rhonda go to camp? \qquad days
d. Cheryl read B books this year. Ralph read 3 more than 5 times as many books as Cheryl. How many books did Ralph read? \qquad books

4. Add or subtract.
a. $\frac{3}{8}+\frac{5}{9}=$ \qquad
b. $\frac{29}{4}+1 \frac{2}{5}=$ \qquad
c. $\frac{18}{7}-2 \frac{1}{5}=$ \qquad

5. Solve.
a. $3.26+504.1=$ \qquad
b. \qquad $=793.82-209.785$
c. \qquad $=987.55+283.6$

Math Boxes 11.2

1. Multiply. Do not use a calculator.
a. $\frac{3}{8} * \frac{5}{4}=$ \qquad b. $\frac{2}{3} * \frac{6}{7}=$ \qquad
c. $\frac{1}{5} * \frac{8}{9}=$ \qquad d. $1 \frac{3}{4} * \frac{4}{5}=$ \qquad
2. Draw a circle with a radius of 1.5 centimeters.

$$
\text { Area }=\pi * r^{2}
$$

Find the area of the circle.

The area is about \qquad cm^{2}.
3. Complete the table. Graph the data and connect the points with line segments.

Maryanne earns $\$ 12$ per hour.

Rule:
earnings $=12 *$ hours

Hours	Earnings
2	
4	
	60
	84
9	

4. Find the area of each figure.

$$
\text { Area of a triangle: } A=\frac{1}{2} * b * h \quad \text { Area of a parallelogram: } A=b * h
$$

a.

Area: \qquad
b.

c.

Area: \qquad Area: \qquad

Comparing Geometric Solids

Use what you know about faces and bases, edges, and vertices to answer the questions.

1. a. How are prisms and pyramids alike?
\qquad
\qquad
\qquad
\qquad
\qquad
b. What are some differences between prisms and pyramids?
\qquad
\qquad
\qquad
\qquad
\qquad

Prisms

Pyramids

Cones

Comparing Geometric Solids (cont.)

2. a. How are prisms and cylinders alike?
\qquad
\qquad
\qquad
\qquad
\qquad
b. What are some differences between prisms and cylinders?
\qquad
\qquad
\qquad
\qquad
\qquad
3. a. How are pyramids and cones alike?
\qquad
\qquad
\qquad
\qquad
\qquad
b. What are some differences between pyramids and cones?
\qquad
\qquad
\qquad
\qquad
\qquad

Volume of Cylinders

The base of a cylinder is circular. To find the area of the base of a cylinder, use the formula for finding the area of a circle.

Formula for the Area of a Circle

$$
A=\pi * r^{2}
$$

where A is the area and r is the radius of the circle.

The formula for finding the volume of a cylinder is the same as the formula for finding the volume of a prism.

Formula for the Volume of a Cylinder

$$
V=B * h
$$

where V is the volume of the cylinder, B is the area of the base, and h is the height of the cylinder.

Use the two cans you have been given.

1. Measure the height of each can, inside the can. Measure the diameter of the base of each can. Record your measurements (to the nearest tenth of a centimeter) in the table below.
2. Calculate the radius of the base of each can. Then use the formula to find the volume. Record the results in the table.

3. Record the capacity of each can in the table, in milliliters.

	Height (cm)	Diameter of Base (cm)	Radius of Base (cm)	Volume $\left(\mathbf{c m}^{\mathbf{3}}\right)$	Capacity (mL)
Can \#1					
Can \#2					

4. Measure the liquid capacity of each can. Fill the can with water. Then pour the water into a measuring cup. Keep track of the total amount of water you pour into the measuring cup.

Capacity of Can \#1: \qquad mL

Capacity of Can \#2: \qquad mL

Volume of Cylinders and Prisms

1. Find the volume of each cylinder.
a.

b.

Volume $=\ldots$ in. ${ }^{3}$
Volume $=$ \qquad cm^{3}

Reminder: The same formula ($V=B * h$) may be used to find the volume of a prism and the volume of a cylinder.
2. Find the volume of each wastebasket. Then determine which wastebasket has the largest capacity and which has the smallest.
a.

b.

Volume $=$ \qquad in. ${ }^{3}$
Volume $=$ \qquad in. ${ }^{3}$
c.

d.

Volume $=$ \qquad in. ${ }^{3}$
Volume $=$ \qquad in. ${ }^{3}$
e. Which wastebasket has the largest capacity? Wastebasket \qquad
Which wastebasket has the smallest capacity? Wastebasket \qquad

1. Write the prime factorization for 180.
\qquad
\qquad
2. If you roll a regular six-sided die, what is the probability of getting
a. a five? \qquad
b. a prime number? \qquad
c. an even number? \qquad
d. a multiple of 3 ? \qquad
3. Theresa is y years old. Write an algebraic expression for the age of each person below.
a. Nancy is four years older than Theresa. Nancy's age: \qquad years
b. Frank is twice as old as Theresa. Frank's age: \qquad years
c. José is $\frac{1}{3}$ as old as Theresa. José's age: \qquad years
d. Lucienne is 8 years younger than Theresa. Lucienne's age: \qquad years
e. If Theresa is 12 , who is the oldest person above? \qquad
How old is that person? \qquad
4. Add or subtract.
a. $4 \frac{2}{3}$
b. $\quad 2 \frac{14}{10}$
c. $\quad 8 \frac{20}{7}$
$-3 \frac{7}{8}$
$\begin{array}{r}+1 \frac{8}{9} \\ \hline\end{array}$
$-6 \frac{3}{9}$
5. Solve.
a. $\quad 52.6$
b. $\quad 703.93$
c. $\quad 826.3$

-19.08	-251.09

Volume of Pyramids and Cones

1. To calculate the volume of any prism or cylinder, you multiply the area of the base by the height. How would you calculate the volume of a pyramid or cone?

The Pyramid of Cheops is near Cairo, Egypt. It was built about 2600 b.c. It is a square pyramid. Each side of the square base is 756 feet long. Its height is 449.5 feet. The pyramid contains about 2,300,000 limestone blocks.
2. Calculate the volume of this pyramid. \qquad ft^{3}
3. What is the average volume of one limestone block?
\qquad ft^{3}

A movie theater sells popcorn in a box for $\$ 2.00$. It also sells cones of popcorn for $\$ 1.50$ each. The dimensions of the box and the cone are shown below.

$\$ 2.00$

\$1.50
4. Calculate the volume of the box. \qquad in. ${ }^{3}$
5. Calculate the volume of the cone. \qquad in. ${ }^{3}$

Challenge

6. Which is the better buy-the box or the cone of popcorn? Explain.
\qquad
\qquad
\qquad

Review of Area

Area Formulas

Rectangle:
$A=b * h$
Parallelogram:
$A=b * h$
Triangle:
$A=\frac{1}{2} * b * h$
where A is the area, b is the length of the base, and h is the height.

Find the areas of rectangles with the following dimensions. Do not forget the units.
You might want to make a sketch of the rectangles on a piece of scratch paper.

1. length of base $=8 \mathrm{in} . \quad$ height $=15 \mathrm{in} . \quad$ Area $=$ \qquad
\qquad
2. length of base $=19 \mathrm{~cm}$ height $=20 \mathrm{~mm}$
Area $=$ \qquad
3. length of base $=18 \mathrm{in} . \quad$ height $=3 \mathrm{ft}$ \qquad
\qquad
\qquad

Find the area of each of the polygons pictured below.
4.

5.
Area $=\square \quad$ (unit)
6.

Area $=$ \qquad
Area $=$ \qquad -
(unit)
7.

$$
\text { Area }=\square \frac{(\text { unit) }}{}
$$

8. Find the area of the parallelogram.
Area $=$ \qquad (unit)

The area of the shaded square is 16 sq cm .

Explain how you found the area of the parallelogram.
\qquad
\qquad
\qquad

1. Multiply. Do not use a calculator.
a. $\frac{3}{8} * \frac{4}{7}=$ \qquad b. $2 \frac{2}{3} * 1 \frac{3}{5}=$
c. $1 \frac{1}{8} * 2 \frac{3}{4}=$ \qquad d. $2 \frac{1}{6} * 3 \frac{1}{4}=$
\qquad
\qquad
2. Allison's pizza has a radius of 8 inches.

$$
\begin{aligned}
& \text { Circumference }=\pi * d \\
& \text { Area }=\pi * r^{2}
\end{aligned}
$$

Find the circumference of the pizza to the nearest inch. \qquad

Find the area of the pizza to the nearest
square inch. \qquad
3. Complete the table. Graph the data and connect the points with line segments.

Marissa runs at an average speed of 6 miles per hour.

Hours	Miles
1	
2	
	30
6	
	48

Rule: miles $=6 *$ hours

4. Circle the rectangular prism below that has the greatest volume.

How to Calibrate a Bottle

Materials 2-liter plastic soft-drink bottle with the top cut off
\square can or jar filled with about 2 liters of water
measuring cup

- ruler
- scissors
paper
\square tape

1. Fill the bottle with about 5 inches of water.
2. Cut a 1 "-by-6" strip of paper. Tape the strip to the outside of the bottle with one end at the bottle top and the other end below the water level.
3. Mark the paper strip at the water level. Write " 0 mL " next to the mark.
4. Pour 100 milliliters of water into a
 measuring cup. Pour the water into the bottle. Mark the paper strip at the new water level and write " 100 mL ."
5. Pour another 100 milliliters of water into the measuring cup. Pour it into the bottle and mark the new water level " 200 mL ."
6. Repeat, adding 100 milliliters at a time until the bottle is filled to within an inch of the top.
7. Pour out the water until the water level in the bottle falls to the $0-\mathrm{mL}$ mark.

How would you use your calibrated bottle to find the volume of a rock?

Finding Volume by a Displacement Method

1. Check that the bottle is filled to the $0-\mathrm{mL}$ level. Place several rocks in the bottle.
a. What is the new level of the water in the bottle? \qquad mL
b. What is the volume of the rocks? \qquad cm^{3}
c. Does it matter whether the rocks are spread out or stacked? \qquad
2. Your fist has nearly the same volume as your heart. Here is a way to find the approximate volume of your heart. Check that the bottle is filled to the $0-\mathrm{mL}$ level. Place a rubber band around your wrist, just below your wrist bone. Put your fist in the bottle until water reaches the rubber band.

a. What is the new level of the water in the bottle? \qquad mL
b. What is the volume of your fist?

This is the approximate volume of your heart. \qquad cm^{3}
c. Does it matter whether you make a fist or keep your hand open?
3. Find the volumes of several other objects in the same way. For example, find the volume of a baseball, a golf ball, an orange, an apple, or a full can of a soft drink. If the object floats in water, use a pencil to force it down. The object must be completely submerged before you read the water level.

Object	Volume of Water Object Displaces (mL)	Volume of Object $\left(\mathbf{c m}^{\mathbf{3}}\right)$

Fraction Review

Add or subtract.

1. $\frac{3}{8}+\frac{7}{8}=$ \qquad 2. $\frac{7}{12}-\frac{1}{8}=$ \qquad 3. $1 \frac{1}{3}+\frac{5}{6}=$
\qquad
2. $\frac{5}{6}+\frac{1}{9}=$ \qquad
3. $\frac{2}{3}-\frac{3}{5}=$ \qquad
4. $3 \frac{3}{7}+1 \frac{1}{2}=$ \qquad
5. $\frac{11}{12}-\frac{3}{4}=$ \qquad
6. $2 \frac{5}{8}+1 \frac{1}{4}=$ \qquad 9. $3 \frac{3}{7}-1 \frac{1}{2}=$ \qquad
7. You have 12 white tiles. If you add some black tiles so that the ratio of white tiles to black tiles is 1 to 3 , how many black tiles will you need? black tiles How many tiles will you have in all? \qquad tiles
8. You have 15 white tiles. If you add some black tiles so that 3 out of 4 tiles are white, how many black tiles will you need? \qquad black tiles How many tiles will you have in all? \qquad tiles
9. You have a total of 24 tiles. Five out of 8 tiles are black. How many black tiles do you have? \qquad black tiles
10. Solve.
a. $\frac{1}{2}$ of $12=$ \qquad
b. $\frac{2}{3}$ of $18=$ \qquad
c. $\frac{3}{8}$ of $24=$ \qquad
d. $\frac{6}{9}$ of $30=$
e. $\frac{1}{2}$ of $\frac{1}{2}=$ \qquad

11. Draw 12 shaded tiles. Then draw some unshaded tiles so that 3 out of 5 tiles are shaded.
12. Solve the pan-balance problems below.
a.

One weighs as
as much as \qquad Xs.
b.

One weighs as
as much as \qquad marbles.

> Solution
a. $-12+d=14$
b. $28-e=-2$
c. $b+18=-24$
d. $-14=f-7$
e. $12=16+g$ \qquad
4. Solve.
\qquad
\qquad
\qquad
\qquad

One weighs as much as \qquad Xs.

One weighs
as much as \qquad marbles.

5. Add or subtract.
a. $\frac{3}{8}+\frac{7}{4}=$ \qquad
b. $\frac{5}{6}+\frac{1}{3}=$ \qquad
c. $3 \frac{3}{4}+\frac{2}{6}=$ \qquad
d. $2 \frac{1}{2}-\frac{3}{4}=$ \qquad
e. $1 \frac{7}{8}-\frac{1}{3}=$ \qquad

Capacity and Weight

Math Message

1 pint $=$ \qquad cups

1 quart = \qquad pints

1 half-gallon = \qquad quarts

1 gallon = \qquad quarts

How can the picture above help you remember how
 many cups are in a pint, how many pints are in a quart, and how many quarts are in a gallon?

1. Round your answer to the nearest ounce.

One cup of dry (uncooked) rice weighs about \qquad ounces.
2. Use the answer in Problem 1 to complete the following.
a. 1 pint of rice weighs about \qquad ounces.
b. 1 quart of rice weighs about \qquad ounces.
c. 1 gallon of rice weighs about \qquad ounces.
d. 1 gallon of rice weighs about \qquad pounds. (1 pound = 16 ounces)
3. On average, a family of 4 in Japan eats about 40 pounds of rice a month.
a. That's about how many pounds a year? \qquad
b. How many gallons a year? \qquad
4. On average, a family of 4 in the United States eats about 88 pounds of rice a year. That's about how many gallons a year? \qquad
5. On average, a family of 4 in Thailand eats about 3 gallons of rice a week.
a. That's about how many gallons a year? \qquad
b. How many pounds a year? \qquad

Capacity and Weight (cont.)

6. Find the capacity of the copy-paper carton shown at the right.
\qquad in. ${ }^{3}$

7. The container at the right is a $\frac{1}{2}$-gallon juice container with the top cut off so that $\frac{1}{2}$ gallon of juice exactly fills it.
a. Find the volume of the $\frac{1}{2}$-gallon container. \qquad in. ${ }^{3}$
b. What is the volume of a 1-gallon container? \qquad in. ${ }^{3}$

8. On average, a family of 4 in Thailand eats about 156 gallons of rice a year. About how many copy-paper cartons will you need to hold this amount of rice? (Hint: First calculate how many gallons of rice will fill 1 copy-paper carton.)
a. What is the capacity of 1 copy-paper carton?

About \qquad gallons
b. How many copy-paper cartons will you need to hold 156 gallons of rice?

About \qquad cartons

Challenge

9. Estimate about how many pounds a copy-paper carton full of rice weighs. Describe what you did to find your estimate.
\qquad
\qquad
\qquad
\qquad

Math Boxes 11.6

1. Multiply. Do not use a calculator.
a. $1 \frac{2}{3} * 2 \frac{4}{7}=$ \qquad b. $1 \frac{5}{6} * 4 \frac{1}{5}=$ \qquad
c. \longrightarrow
$=\frac{18}{3} * \frac{3}{9}$
d. $\quad=\frac{7}{8} * \frac{5}{4}$
e. \qquad $=3 \frac{3}{4} * 2 \frac{1}{2}$
2. What is the diameter of a circle if its radius is 10 cm ?
Radius: \qquad

Diameter: \qquad

Area	$=\pi * r^{2}$
Circumference	$=\pi * d$
	$=\pi * 2 r$

Find the area and circumference of the circle.
Round the area to the nearest square centimeter and the circumference to the nearest centimeter.

Area: \qquad Circumference: \qquad
3. Fran reads at a rate of 50 pages an hour. Complete the table. Graph the data and connect the points with line segments.

Rule: pages $=50 *$ hours

4. a. The rectangular prism below has a volume of 126 cubic centimeters.

Area of base $=42 \mathrm{~cm}^{2}$
What is the height of the prism? \qquad
b. The prism to the right is made of centimeter cubes.

What is the area
 of the base? \qquad

What is the volume of the prism? \qquad

Math Boxes 11.7

1. Solve.
a. $\frac{4}{5}$ of $25=$ \qquad
b. $\frac{5}{7}$ of $35=$ \qquad
c. $\frac{3}{12}$ of $16=$ \qquad
d. $\frac{6}{8}$ of $20=$ \qquad
e. $\frac{1}{2}$ of $\frac{1}{4}=$ \qquad
2. Solve the pan-balance problems below.

One ${ }^{\text {Q }}$ weighs as
as much as \qquad Xs.

One weighs
as much as \qquad Xs.
c. $\frac{11}{12}$ of a set contains 88 objects. How many objects are in the whole set?
\qquad objects
b. $\frac{4}{9}$ of a set contains 36 objects. How many objects are in the whole set?
objects
2. a. $\frac{5}{7}$ of a set contains 25 objects. How many objects are in the whole set?
\qquad objects
\qquad
\square
b. $\frac{\triangle \triangle \triangle O 0000, ~ Q \theta Q \theta}{\square}$

One weighs as
as much as \qquad paper clips.

One weighs
as much as \qquad paper clips.
4. Solve.

Solution
a. $6=20+s$
b. $18+t=-2$
c. $-15+u=-23$
d. $-11-v=-5$
e. $29-w=35$
a. $3 \frac{4}{5}-1 \frac{5}{8}=$
b. $\frac{15}{12}-1 \frac{1}{8}=$
c. $\frac{22}{7}-2 \frac{2}{3}=$
d. $\frac{5}{6}+2 \frac{3}{4}=$
e. $4 \frac{1}{3}+3 \frac{2}{8}=$

Surface Area

The surface area of a box is the sum of the areas of all 6 sides (faces) of the box.

1. Your class will find the dimensions of a cardboard box.
a. Fill in the dimensions on the figure below.
b. Find the area of each side of the box. Then find the total surface area.
Area of front $=$ \qquad in. ${ }^{2}$

Area of back $=\ldots$ in. ${ }^{2}$
Area of right side $=$ \qquad in. ${ }^{2}$

Area of left side $=$ \qquad in. ${ }^{2}$ Area of top $=$ \qquad in. ${ }^{2}$

Area of bottom $=$ \qquad in. ${ }^{2}$

Total surface area $=$ \qquad in. ${ }^{2}$
2. Think: How would you find the area of all the metal used to manufacture a can?
a. How would you find the area of the top or bottom of the can?
\qquad
\qquad
\qquad
b. How would you find the area of the curved surface between the top and bottom of the can?
\qquad
\qquad
\qquad
c. Choose a can. Find the total area of the metal used to manufacture the can. Remember to include a unit for each area.

$$
\begin{aligned}
\text { Area of top } & = \\
\text { Area of bottom } & =
\end{aligned}
$$

Area of curved side surface $=$ \qquad

Total surface area $=$ \qquad

Surface Area (cont.)

Formula for the Area of a Triangle

$$
A=\frac{1}{2} * b * h
$$

where A is the area of the triangle, b is the length of its base, and h is its height.
3. Use your model of a triangular prism.
a. Find the dimensions of the triangular and rectangular faces. Then find the areas of these faces. Measure lengths to the nearest $\frac{1}{4}$ inch.
base $=$ \qquad in.
height $=$ \qquad in.
Area $=$ \qquad in. ${ }^{2}$

length $=$ \qquad in.
width $=$ \qquad in.
Area $=$ \qquad in. ${ }^{2}$

b. Add the areas of the faces to find the total surface area.

Area of 2 triangular bases $=$ \qquad in. ${ }^{2}$

Area of 3 rectangular sides $=$ \qquad in. ${ }^{2}$

Total surface area $=$ \qquad in. ${ }^{2}$
4. Use your model of a square pyramid.
a. Find the dimensions of the square and triangular faces. Then find the areas of these faces. Measure lengths to the nearest tenth of a centimeter.

b. Add the areas of the faces to find the total surface area.

Area of square base $=$ \qquad cm^{2}

Area of 4 triangular sides $=$ \qquad cm^{2}

Total surface area $=$ \qquad cm^{2}

Time to Reflect

1. Explain what is meant by the volume of a three-dimensional object. Pretend that you are trying to explain it to a new student.
\qquad
\qquad
\qquad
\qquad
2. Describe at least two situations in which you would find the capacity of something.
\qquad
\qquad
\qquad
\qquad
3. Describe at least two situations in which you would find the surface area of something.
\qquad
\qquad
\qquad
\qquad
4. Look back through your journal. List at least one concept that you studied in this unit that you think you will find useful.
\qquad
\qquad
\qquad
\qquad
5. What was your favorite lesson in this unit? Explain.
\qquad
\qquad
\qquad

Math Boxes 11.8

1. Write the prime factorization for 175.
2. Multiply.
a. $\frac{7}{8} * \frac{8}{9}=$ \qquad
b. $-=1 \frac{1}{3} * 2 \frac{1}{5}$
c. \qquad $=4 \frac{1}{6} * 3 \frac{1}{3}$
d. \qquad
e. \qquad $=5 * 2 \frac{5}{7}$
3. Solve.
a. $\frac{3}{8}$ of $40=$ \qquad
b. $\frac{2}{3}$ of $120=$ \qquad
c. $\frac{4}{5}$ of $60=$ \qquad
d. $\frac{7}{9}$ of $54=$ \qquad
e. $\frac{5}{6}$ of $36=$ \qquad
4. Add.
a. $\frac{3}{8}+\frac{2}{5}=$ \qquad
b. $\frac{5}{6}+\frac{3}{4}=$ \qquad
c. $1 \frac{4}{7}+\frac{2}{3}=$ \qquad
d. $5 \frac{5}{9}+2 \frac{1}{7}=$ \qquad
e. $4 \frac{1}{5}+1 \frac{7}{8}=$ \qquad
5. Color the spinner so that there is a 25% chance of landing on red and a $\frac{1}{3}$ chance of landing on black. Leave the rest of the spinner white.

What is the probability of landing on white? \qquad

If you spin the spinner 300 times, about how many times would you expect the spinner to land on black?

Math Boxes 12.1

1. Solve.
a. If 15 marbles are $\frac{3}{5}$ of the marbles in a bag, how many marbles are in the bag? \qquad marbles
b. If 14 pennies are 7% of a pile of pennies, how many pennies are in the pile? \qquad pennies
c. 75 students are absent today. This is 10% of the students enrolled at the school. How many students are enrolled at the school? \qquad students
d. Jane paid $\$ 90$ for a new radio. It was on sale for $\frac{3}{4}$ of the regular price. What is the regular price of the radio? \qquad

2. Name the number for each point marked on the number line.

$A=$ \qquad $B=$ \qquad $C=$ \qquad
$D=$ \qquad
$E=$ \qquad
$F=$ \qquad
3. Add or subtract.
a. $384.06+207.9=$ \qquad
b. $78.054+3.999=$ \qquad
\qquad

$$
=204.36-1,887.09
$$

d. \qquad $=63.5-17.084$
e. \qquad

$$
=237-3.87
$$

Factors

Math Message

1. Write all the pairs of factors whose product is 48 . One pair has been done for you.

$$
48=6 * 8
$$

2. One way to write 36 as a product of factors is $2 * 18$. Another way is $2 * 2 * 9$. Write 36 as the product of the longest possible string of factors. Do not include 1 as a factor.

Factor Trees

One way to find all the prime factors of a number is to make a factor tree. First, write the number. Then, underneath, write any two factors whose product is that number. Then write factors of each of these factors. Continue until all the factors are prime numbers. Below are three factor trees for 36 .

It does not matter which two factors you begin with. You always end with the same prime factors; for 36 , they are $2,2,3$, and 3 . The prime factorization of 36 is $2 * 2 * 3 * 3$.
3. Make a factor tree for each number. Then write the prime factorization.
a.

24
b.

50
\qquad $50=$ \qquad

Factor Trees and Greatest Common Factors

The greatest common factor of two whole numbers is the largest number that is a factor of both numbers.

Example 1 Find the greatest common factor of 24 and 60.
Step 1 List all the factors of 24: 1, 2, 3, 4, 6, 8, 12, and 24.
Step 2 List all the factors of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60.
Step 3 1, 2, 3, 4, 6, and 12 are on both lists. They are common factors. 12 is the largest number. It is the greatest common factor of 24 and 60.

Another way to find the greatest common factor of two numbers is to use prime factorization.
Example 2 Find the greatest common factor of 24 and 60.
Step 1 Write the prime factorization of each number.
$24=2 * 2 * 2 * 3$
$60=2 * 2 * 3 * 5$

Step 2 Circle pairs of common factors.
$24=2+2 * 2 * 3$
$60=2 * 2 * 5$

Step 3 Multiply one factor in each pair of circled factors.
The greatest common factor of 24 and 60 is $2 * 2 * 3$, or 12.

1. Make a factor tree for each number below.
a.
10
b.
75
c.
90

Factor Trees and Greatest Common Factors (cont.)

2. a. Which prime factors do 10 and 75 have in common? \qquad
b. What is the greatest common factor of 10 and 75 ? \qquad
3. a. Which prime factors do 75 and 90 have in common? \qquad
b. What is the greatest common factor of 75 and 90 ? \qquad
4. a. Which prime factors do 10 and 90 have in common? \qquad
b. What is the greatest common factor of 10 and 90 ? \qquad
5. Use the factor trees in Problem 1 to help you write each fraction below in simplest form. Divide the numerator and denominator by their greatest common factor.
a. $\frac{10}{75}=$ \qquad
b. $\frac{75}{90}=$ \qquad
c. $\frac{10}{90}=$ \qquad
6. What is the greatest common factor of 20 and 25 ?
(Hint: Use factor trees to help you.) \qquad
Write the fraction $\frac{20}{25}$ in simplest form.
$\frac{20}{25}=$ \qquad

Challenge

7. What is the greatest common factor of 1,260 and 1,350 ?
(Hint: $1,260=2 * 2 * 3 * 3 * 5 * 7$ and $1,350=2 * 3 * 3 * 3 * 5 * 5$.)

Factor Trees and Least Common Multiples

The least common multiple of two numbers is the smallest number that is a multiple of both numbers.

Example Find the least common multiple of 8 and 12.
Step 1 List the multiples of $8: 8,16,24,32,40,48,56$, and so on.
Step 2 List the multiples of 12: 12, 24, 36, 48, 60, and so on.
Step 324 and 48 are in both lists. They are common multiples.
24 is the smallest number. It is the least common multiple for 8 and 12.
24 is also the smallest number that can be divided by both 8 and 12 .

Another way to find the least common multiple for two numbers is to use prime factorization.

Example Find the least common multiple of 8 and 12.
Step 1 Write the prime factorization of each number:

$$
8=2 * 2 * 2 \quad 12=2 * 2 * 3
$$

Step 2 Circle pairs of common factors. Then cross out one factor in each pair as shown below.

$$
\begin{array}{r}
8=2 * 2+2 \\
12=2 * 2
\end{array}
$$

Step 3 Multiply the factors that are not crossed out. The least common multiple of 8 and 12 is $2 * 2 * 2 * 3$, or 24 .

1. Make factor trees and write the prime factorizations for each number.
a.
15
b.
9
c.
30
$15=$ \qquad $9=$ \qquad $30=$ \qquad
2. What is the least common multiple of ...
a. 9 and 15 ?
b. 15 and 30 ? \qquad c. 9 and 30 ? \qquad

Rate Number Stories

1. Mica reads about 44 pages in an hour.

About how many pages will she read in $2 \frac{3}{4}$ hour? \qquad pages

Explain how you found your answer. \qquad
\qquad

If Mica starts reading a 230-page book at 3:30 p.м., and she reads straight through the book (without stopping), about what time will Mica finish the book? \qquad
Explain how you found your answer. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Tyree and Jake built a tower of centimeter cubes. The bottom floor of the tower is rectangular. It is 5 cubes wide and 10 cubes long. The completed tower is the shape of a rectangular prism. They began building at 2 р.м. They built for about 1 hour. They used approximately 200 cubes every 10 minutes.

How tall was the final tower? \qquad
(unit)
Explain how you found your answer. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Probability

When a fair 6-sided die is rolled, each number from 1 to 6 has an equal chance of coming up. The numbers $1,2,3,4,5$, and 6 are equally likely.

The spinner below is divided into 10 equal sections. There is an equal chance of spinning each number from 1 through 10 . The numbers $1,2,3, \ldots, 9,10$ are equally likely. This does not mean that if you spin 10 times, each number from 1 to 10 will come up exactly once. A 2 might come up four times, and a 10 might not come up at all. But if you spin many times (say 1,000 times), each number is likely to come up about $\frac{1}{10}$ of the time. The probability of landing on 1 is $\frac{1}{10}$. The probability of landing on 2 is also $\frac{1}{10}$, and so on.

Example What is the probability that the spinner at the right will land on an even number?

The spinner will land on an even number if it lands on $2,4,6,8$, or 10 . Each of these even numbers is likely to come up $\frac{1}{10}$ of the time. The total probability that one of these even numbers will come up is found by adding:

$$
\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}=\frac{5}{10}
$$

Lands on $24 \begin{array}{lllll}2 & 6 & 8 & 10\end{array}$

The probability of landing on an even number is $\frac{5}{10}$.
Find the probability of each of the following for this spinner.

1. The spinner lands on an odd number. \qquad
2. The spinner lands on a number less than 7. \qquad
3. The spinner lands on a multiple of 3 . \qquad
4. The spinner lands on a number that is a factor of 12. \qquad
5. The spinner lands on the greatest common factor of 4 and 6. \qquad
6. The spinner lands on a prime number. \qquad
7. The spinner lands on a number that is NOT a prime number. \qquad

The Multiplication Counting Principle and Tree Diagrams

Multiplication Counting Principle

Suppose you can make a first choice in m ways, and a second choice in n ways. Then there are $m * n$ ways of making the first choice followed by the second choice. Three or more choices can be counted in the same way, by multiplying.

A school cafeteria offers these choices for lunch:
Main Course: chili or hamburger
Drink: milk or juice
Dessert: apple or cake

1. a. How many different ways can a student choose one main course, one drink, and one dessert? Use the Multiplication Counting Principle.

	$*$		$*$
(ways to choose	(ways to choose		(ways to choose
a main course)	a drink)		a dessert)

b. Number of different ways to select foods for lunch: \qquad
2. Draw a tree diagram to show all possible ways to select foods for lunch.

Main Course: \qquad

Drink: \qquad
\qquad
\qquad
\qquad

Dessert: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. a. Do you think that all of the ways to select foods for lunch are equally likely? \qquad
b. Explain your answer. \qquad
\qquad
\qquad
\qquad

Tree Diagrams and Probability

Sam has 3 clean shirts (red, blue, and yellow) and 2 clean pairs of pants (tan and black). He grabs a shirt and a pair of pants without looking.

1. Complete the tree diagram to show all possible ways that Sam can grab a shirt and a pair of pants.

Shirts:

Pants: \qquad
\qquad
\qquad
2. List all possible combinations of shirts and pants. One has been done for you.
3. How many different combinations of shirts and pants are there? \qquad combinations
4. Are all the shirt-pants combinations equally likely? \qquad
5. What is the probability that Sam will grab the following?
a. the blue shirt \qquad
b. the blue shirt and the black pants \qquad
c. the tan pants \qquad
d. a shirt that is NOT yellow \qquad
e. the tan pants and a shirt that is NOT yellow \qquad

Tree Diagrams and Probability (cont.)

Mr. Jackson travels to and from work by train. Trains to work leave at 6:00, 7:00, 8:00, and 9:00 А.м. Trains from work leave at 3:00, 4:00, and 5:00 p.м.

Mr. Jackson is equally likely to select any 1 of the 4 morning trains to go to work.
He is equally likely to select any of the 3 afternoon trains to go home from work.

To work:

From work:

1. In how many different ways can

Mr. Jackson take trains to and from work? \qquad different ways
2. Are these ways equally likely? \qquad
3. What is the probability of each of the following?
a. Mr. Jackson takes the 7:00 A.m. train to work.
b. He returns home on the 4:00 P.M. train. \qquad
c. He takes the 7:00 A.M. train to work and returns on the 4:00 P.M. train. \qquad
d. He leaves on the 9:00 A.м. train and returns on the 5:00 р.м. train. \qquad
e. He leaves for work before 9:00 A.M. \qquad
f. He leaves for work at 6:00 A.M. or 7:00 A.M. and returns at 3:00 P.M. \qquad
g. He returns home, but NOT on the 5:00 p.M. train. \qquad
h. He gets on the train to go home 9 hours after taking the train to go to work. \qquad

Math Boxes 12.2

1. Rename each fraction as a mixed number or a whole number.
a. $\frac{59}{5}=$ \qquad
b. $\frac{88}{11}=$ \qquad
c. $\frac{120}{7}=$ \qquad
d. $\frac{94}{4}=$
e. $\frac{102}{6}=$ \qquad

2. Round each number to the nearest tenth.
a. 50.009 \qquad
b. 321.65 \qquad
c. 2.38 \qquad
d. 0.09
e. 75.993
\qquad
\qquad
3. The students in Mrs. Dillard's class took a survey of their favorite colors. Complete the table. Then make a circle graph of the data.

Favorite Color	Number of Students	Percent of Class
Red	6	
Blue	10	
Orange	4	
Yellow	2	
Purple	3	
Total		

4. Use your calculator to complete the table.

Exponential Notation	Product of Factors	Standard Notation
9^{4}		
	$12 * 12 * 12 * 12$	20,736
8^{4}		
	$11 * 11 * 11 * 11 * 11$	
10^{3}		

5. Add or subtract.
a. $\frac{3}{8}+\frac{9}{2}=$ \qquad
b. $2 \frac{4}{3}-\frac{7}{8}=$ \qquad
c. $4 \frac{2}{5}-2 \frac{5}{6}=$ \qquad
d. $5 \frac{3}{4}+2 \frac{5}{12}=$ \qquad

Ratios

Math Message

Ratios can be expressed in many ways. All of the following are statements of ratios:

- It is estimated that by the year 2020 there will be 5 times as many people 100 years old or older than there were in 1990.
- Elementary school students make up about 14% of the U.S. population.
- On an average evening, about $\frac{1}{3}$ of the U.S. population watches TV.
- The chances of winning a lottery can be less than 1 in 1 million.
- A common scale for dollhouses is 1 inch to 12 inches.

A ratio uses division to compare two counts or measures having the same unit. Ratios can be stated or written in a variety of ways. Sometimes a ratio is easier to understand or will make more sense if it is rewritten in another form.

Example In a group of ten students, eight students are right-handed and two are left-handed. The ratio of left-handed students to all students can be expressed in the following ways:

- With words: Two out of the ten students are left-handed.

Two in ten students are left-handed.
The ratio of left-handed students to all students is two to ten.

- With a fraction: $\frac{2}{10}$, or $\frac{1}{5}$ of the students are left-handed.
- With a percent: 20% of the students are left-handed.
- With a colon between the two numbers being compared:

The ratio of left-handed students to all students is 2:10 ("two to ten").

Writing Ratios

Express the ratio of right-handed students to all students in the example above.

1. With words: \qquad students are right-handed.
2. With a fraction: \qquad of the students are right-handed.
3. With a percent: \qquad of the students are right-handed.
4. With a colon: The ratio of right-handed students to all students is \qquad

Using Ratios to Examine a Trend

1. a. According to the table on page 314 of the Student Reference Book, has the ratio of farmers to all working people increased or decreased since 1900?
\qquad
b. Why do you think this has happened? \qquad
\qquad
\qquad
2. a. Has the ratio of engineers to all working people increased or decreased since $1900 ?$
\qquad
b. Why do you think this has happened? \qquad
\qquad
\qquad
3. a. How has the ratio of clergy to all working people changed since $1900 ?$
\qquad
b. Why do you think this has happened? \qquad
\qquad
\qquad

Challenge

4. About how many farmers were there
a. in 1900 ? \qquad
b. in 2000? \qquad
5. About how many photographers were there
a. in 1900 ? \qquad
b. in 2000 ? \qquad

10 Times

Have you ever heard or used expressions such as "10 times more," "10 times as many," "10 times less," or " $\frac{1}{10}$ as many"? These are ratio comparisons. Be sure to use expressions like these with caution. Increasing or reducing something by a factor of 10 makes a big difference!

Scientists call a difference of 10 times a magnitude, and they believe that the world as we know it changes drastically when something is increased or decreased by a magnitude.

Example A person can jog about 5 miles per hour. A car can travel 10 times faster than that, or 50 miles per hour. A plane can travel 10 times faster than that, or 500 miles per hour. Each magnitude increase in travel speed has had a great effect on our lives.

Complete the following table. Then add two of your own events or items to the table.

Event or Item	Current Measure or Count	10 Times More	10 Times Less ($\mathbf{1 0}$ as much)
Length of Math Class			
Number of Students in Math Class			
Length of Your Stride			

Math Boxes 12.3

1. Insert parentheses to make each expression true.
a. $-14+36 / 4-(-2)=-3$
b. $-14+36 / 4-(-2)=-8$
c. $15=(-20)-(-5)+10 * 3$
d. $-35=(-20)-(-5)+10 * 3$
e. $8 * 6-(-24)+71=311$

2. Find the volume of the prism.

Volume of a Triangular Box

Volume $=$ Area of the base $*$ height

Volume: \qquad cm^{3}

3. a. Write a 9-digit numeral that has a 4 in the hundred-thousands place, a 6 in the millions place, a 5 in the tens place, a 2 in the hundredths place, a 9 in the thousands place, and a 3 in all of the other places.
\qquad - \qquad
\qquad , \qquad \square \qquad . \qquad
b. Write this numeral in words.
\qquad
\qquad

4. Measure each angle to the nearest degree.
a.

b.

$\angle D$ measures about \qquad \circ
$\angle E$ measures about \qquad

Comparing Parts to Wholes

A ratio is a comparison. Some ratios compare part of a collection of things to the total number of things in the collection. For example, the statement " 1 out of 6 students in the class is absent" compares the number of students absent to the total number of students in the class. Another way to express this ratio is to say, "For every 6 students enrolled in the class, 1 student is absent" or " $\frac{1}{6}$ of the students in the class are absent."

If you know the total number of students in the class, you can use this ratio to find the number of students who are absent. For example, if there are 12 students in the class, then 2 of the students are absent. If there are 18 students in the class, then 3 students are absent.

If you know the number of students who are absent, you can also use this ratio to find the total number of students in the class. For example, if 5 students are absent, there must be a total of 30 students in the class.

Solve the following ratio problems. Use the square tiles you cut out from Math Journal 2, Activity Sheet 8 to help you.

1. Place 28 tiles on your desk so that 1 out of 4 tiles is white and the rest are shaded.

How many tiles are white? \qquad How many tiles are shaded? \qquad
2. Place 30 tiles on your desk so that 4 out of 5 tiles are white and the rest are shaded. How many tiles are white? \qquad How many tiles are shaded? \qquad
3. Place 7 white tiles on your desk. Add some tiles so that 1 out of 3 tiles is white and the rest are shaded. How many tiles are there in all? \qquad
4. Place 25 white tiles on your desk. Add some tiles so that 5 out of 8 tiles are white and the rest are shaded. How many tiles are there in all? \qquad
5. Take 32 tiles. If 6 out of 8 are white, how many are white? \qquad
6. Take 15 tiles. If 6 out of 9 are white, how many are white? \qquad
7. Place 24 tiles on your desk so that 8 are white and the rest are shaded. One out of \qquad tiles is white.
8. Place 18 tiles on your desk so that 12 are white and the rest are shaded.
\qquad out of 3 tiles are white.

Ratio Number Stories

Use your tiles to model and solve the number stories below.

1. It rained 2 out of 5 days in the month of April. On how many days did it rain that month? \qquad
2. For every 4 times John was at bat, he got 1 hit. If he got 7 hits, how many times did he bat? \qquad
3. There are 20 students in Mrs. Kahlid's fifth-grade class. Two out of 8 students have no brothers or sisters. How many students have no brothers or sisters?
\qquad
4. Rema eats 2 eggs twice a week. How many eggs will she eat in the month of February? \qquad
How many weeks will it take her to eat 32 eggs?
5. David took a survey of people's favorite flavors of ice cream. Of the people he surveyed, 2 out of 5 said that they like fudge swirl best, 1 out of 8 chose vanilla, 3 out of 10 chose maple walnut, and the rest chose another flavor.
a. If 16 people said that fudge swirl is their favorite flavor, how many people took part in David's survey? \qquad
b. If 80 people participated in David's survey, how many preferred a flavor that is not fudge swirl, vanilla, or maple walnut? \qquad
6. Make up your own ratio number story. Ask your partner to solve it.
\qquad
\qquad
\qquad
\qquad
\qquad
Answer: \qquad

Math Boxes 12.4

1. Martin missed $\frac{1}{8}$ of the 24 shots he took in a basketball game against the Rams.
a. What fraction of the shots did he make? \qquad
b. How many shots did he miss? \qquad shots
c. How many shots did he make? \qquad shots
d. What percent of his shots did he make? \qquad
2. a. Mark and label $-1.7,0.8,-1.3$, and 1.9 on the number line.

b. What number is 1 less than -1.7 ? \qquad
c. What number is 1 more than 1.9 ? \qquad
3. Add or subtract.
a. $\quad 703.03$
b.
243.84
c. $\quad 438.29$
d. 278.6

- 665.4
-176.56
105.003
+
- 89.45

More Ratio Number Stories

You can solve ratio number stories by first writing a number model for the story.

Example

Sidney missed 2 out of 9 problems on the math test. There were 36 problems on the test. How many problems did he miss?

1. Write a number model: $\underset{(\text { total) }}{(\text { missed) }} \frac{2}{9}=\frac{\square}{36}$
2. Find the missing number.

Think: 9 times what number equals $36 ? \quad 9 * 4=36$
Multiply the numerator, 2 , by this number: $2 * 4=8$
$\underset{(\text { total })}{(\text { missed) }}) \frac{2 * 4}{9 * 4}=\frac{8}{36}$
3. Answer: Sidney missed 8 out of 36 problems.

Write a number model for each problem. Then solve the problem.

1. Of the 42 animals in the Children's Zoo, 3 out of 7 are mammals. How many mammals are there in the Children's Zoo?

Number model: \qquad Answer: \qquad
2. Five out of 8 students at Kenwood School play an instrument. There are 224 students at the school. How many students play an instrument?

Number model: \qquad Answer: \qquad
3. Mr. Lopez sells subscriptions to a magazine. Each subscription costs \$18. For each subscription he sells, he earns $\$ 8$. One week, he sold $\$ 198$ worth of subscriptions. How much did he earn?

Number model: \qquad Answer: \$ \qquad

More Ratio Number Stories (cont.)

4. Make up a ratio number story. Try to make it a hard one. Ask your partner to solve it.
\qquad
\qquad
\qquad
Answer: \qquad

Find the missing number.
5. $\frac{1}{3}=\frac{x}{39}$
$x=$ \qquad
6. $\frac{3}{4}=\frac{21}{y}$
$y=$ \qquad
7. $\frac{7}{8}=\frac{f}{56}$
$f=$ \qquad
8. $\frac{1}{5}=\frac{13}{n}$
$n=$ \qquad
9. $\frac{5}{6}=\frac{m}{42}$
$m=$ \qquad
10. $\frac{9}{25}=\frac{s}{100}$
$s=$ \qquad

Challenge

11. There are 48 students in the fifth grade at Robert's school. Three out of 8 fifth graders read two books last month. One out of 3 students read just one book. The rest of the students read no books at all.

How many books in all did the fifth graders read last month? \qquad
Explain what you did to find the answer.
\qquad
\qquad
\qquad
\qquad
\qquad

Volume Review

Area of rectangle: $A=b * h$
Volume of prism or cylinder: $V=B * h$

Area of circle: $A=\pi * r^{2}$
Circumference of circle: $C=2 * \pi * r$

1. Find the volume of each cylinder.
a.

b.

Volume $=$
\qquad in. ${ }^{3}$
Volume $=$
\qquad in. ${ }^{3}$
2. Four food containers are pictured below. Find the volume of each. Determine which container has the largest capacity and which has the smallest capacity.
a.

b.

Volume $=$ \qquad in. ${ }^{3}$

$$
\text { Volume }=
$$

\qquad in. ${ }^{3}$
c.

d.

Volume $=$ \qquad in. ${ }^{3}$
Volume $=$ \qquad in. ${ }^{3}$
e. Which container has the largest capacity? \qquad
f. Which container has the smallest capacity? \qquad

Math Boxes 12.5

1. Rename each fraction as a mixed number or a whole number.
a. $\frac{79}{8}=$ \qquad
b. $\frac{45}{9}=$ \qquad
c. $\frac{111}{3}=$ \qquad
d. $\frac{126}{6}=$ \qquad
e. $\frac{108}{5}=$ \qquad
2. Mrs. Porter's students took a survey of their favorite movie snacks. Complete the table. Then make a circle graph of the data.

Favorite Snack	Number of Students	Percent of Class
Popcorn	11	
Chocolate	5	
Soft drink	6	
Fruit chews	2	
Candy with nuts	1	
Total		

2. Round each number to the nearest hundred.
a. $318,495.1$ \qquad
b. 79,002 \qquad
c. 604.381 \qquad
d. 13,229 \qquad
e. 5,098

3. Add or subtract.
a. $4 \frac{2}{4}-2 \frac{2}{3}=$ \qquad
b. $3 \frac{8}{12}-2 \frac{11}{12}=$
c. $4 \frac{1}{5}+2 \frac{3}{7}=$
d. $\frac{32}{12}+3 \frac{2}{3}=$ \qquad

The Heart

The heart is an organ in your body that pumps blood through your blood vessels. Heart rate is the rate at which your heart pumps blood. It is usually expressed as the number of heartbeats per minute. With each heartbeat, the arteries stretch and then go back to their original size. This throbbing of the arteries is called the pulse. The pulse rate is the same as the heart rate.

You can feel your pulse along your wrist, near the bone, and
 below the thumb. You can also feel it in your neck: Run your index and middle fingers from your ear, past the curve of your jaw, and press them into the soft part of your neck just below your jaw.

My Heart Rate

Feel your pulse and count the number of heartbeats in 15 seconds. Your partner can time you with a watch or the classroom clock. Do this several times, until you are sure that your count is accurate.

1. About how many times does your heart beat in 15 seconds? \qquad
2. At this rate, about how many times would it beat in 1 minute? \qquad in 1 hour? \qquad in 1 day? \qquad in 1 year? \qquad
3. Your fist and your heart are about the same size. Measure your fist with your ruler. Record the results.

My heart is about \qquad inches wide and \qquad inches long.

4. A person's heart weighs about 1 ounce per 12 pounds of body weight.

Circle how much your heart weighs.

Math Boxes 12.6

1. Insert parentheses to make each expression true.
a. $-28+43 * 2=30$
b. $-19=12 / 2 * 6+(-20)$
c. $16=12 / 2 * 6+(-20)$
d. $24 / 6-(-2)+5=8$
e. $24 / 6-(-2)+5=11$
2. Find the volume of the cylinder.

Volume of a Cylinder

Volume $=$ Area of the base $*$ height

Volume: \qquad in. ${ }^{3}$
3. a. Write a 7-digit numeral that has a 5 in the ten-thousands place, a 6 in the tenths place, a 9 in the ones place, a 7 in the hundreds place, a 3 in the hundredths place, and a 2 in all of the other places.
\qquad
\qquad , \qquad
\qquad
\qquad . \qquad
\qquad
b. Write this numeral in words.
\qquad
\qquad
4. Measure each angle to the nearest degree.
a.

b.

$\angle M$ measures about \qquad .
$\angle P$ measures about \qquad

Exercise and Your Heart

Exercise increases the rate at which a person's heart beats. Very strenuous exercise can double the heart rate.

Work with a partner to find out how exercise affects your heart rate.

1. Sit quietly for a minute. Then have your partner time you for 15 seconds while you take your pulse. Record the number of heartbeats in the first row of the table at the right.
2. Step up onto and down from a chair 5 times without stopping. As soon as you finish, take your pulse for 15 seconds while your partner times you. Record the number of heartbeats in the second row of the table.
3. Sit quietly. While you are resting, your partner can do 5 step-ups, and you can time your partner.

Step-ups	Heartbeats per 15 Seconds
0	
5	
10	
15	
20	
25	

4. When your pulse is almost back to normal, step up onto and down from the chair 10 times. Record the number of heartbeats in 15 seconds in the third row of the table. Then rest while your partner does 10 step-ups.
5. Repeat for 15,20 , and 25 step-ups.
6. Why is it important that all students step up at the same rate?

Have a Heart

Giraffes do! Their hearts weigh up to 25 pounds and are up to 2 feet across. A giraffe's heart has to work hard to move blood up that neck, which can be 10 to 12 feet long. The average giraffe's blood pressure is three times that of a human's.

My Heart-Rate Profile

1. Make a line graph of the data in your table on journal page 428.

2. Make a prediction: What will your heart rate be if you do 30 step-ups?

About \qquad heartbeats in 15 seconds
3. When you exercise, you must be careful not to put too much stress on your heart. Exercise experts often recommend a "target" heart rate to reach during exercise. The target heart rate varies, depending on a person's age and health, but the following rule is sometimes used.

Target heart rate during exercise:

Subtract your age from 220. Multiply the result by 2 . Then divide by 3.
The result is the target number of heartbeats per minute.
a. According to this rule, what is your target heart rate during exercise?

About \qquad heartbeats per minute
b. That's about how many heartbeats in 15 seconds?

About \qquad heartbeats

My Class's Heart-Rate Profile

1. Complete the table.

Class Landmarks: Number of Heartbeats per 15 Seconds

Number of Step-ups	Maximum	Minimum	Range	Median
0				
5				
10				
15				
20				
25				

2. Make a line graph of the medians on the grid on journal page 429. Use a coloring pencil or crayon. Label this line "Class Profile." Label the other line "My Own Profile."
3. Compare your personal profile to the class profile.

Miles of Blood

There are about 5 million red blood cells, and between 5 thousand and 10 thousand white blood cells, in 1 milliliter of blood from an average man. If all of one man's blood cells were lined up side by side, they would wrap around Earth about seven times.

Source: The Odd Book of Data

Math Boxes 12.7

1. Mark and label each point on the ruler below.
A: $4 \frac{1}{4} \mathrm{in}$.
B: $\frac{3}{16} \mathrm{in}$.
C: $2 \frac{7}{8}$ in.
D: $1 \frac{1}{2} \mathrm{in}$.
E: $3 \frac{3}{8} \mathrm{in}$.

2. Multiply or divide.
a. 389
b. 299
c. $9 \longdiv { 2 4 3 }$
d. $8 4 \longdiv { 8 5 6 }$

* 20 * 37

3. Solve.

One orange weighs
as much as \qquad X s.

One triangle weighs
as much as \qquad X.

One cube weighs
as much as \qquad X s.

One paper clip weighs
as much as \qquad X.

Date

Review of Ratios

1. What is the ratio of the length of line segment $A B$ to the length of line segment $C D$?
\qquad

2. Circle the pair of line segments whose lengths have the same ratio as $\overline{A B}$ to $\overline{C D}$ in Problem 1.
a.

b. $\quad \stackrel{\square}{\frac{3}{4} \text { in. }} \stackrel{J}{\bullet}$
c. $\stackrel{M}{\bullet}$

3. There are 13 boys and 15 girls in a group. What fractional part of the group is boys? \qquad
4. Problem 3 was given to groups of 13-year-olds, 17-year-olds, and adults. The answers and the percent of each group that gave those particular answers are shown in the table below.

Answers	13-Year-Olds	17-Year-Olds	Adults
$\frac{13}{28}$	20%	36%	25%
$\frac{13}{28}$ written as a decimal	0%	0%	1%
$\frac{13}{15}$ or 0.86	17%	17%	15%
$\frac{15}{28}$	2%	2%	3%
Other incorrect answers	44%	29%	35%
Don't know	12%	13%	20%
No answer	5%	3%	1%

a. What mistake was made by the people who gave the answer $\frac{15}{28}$?
\qquad
\qquad
b. What mistake was made by the people who gave the answer $\frac{13}{15}$?

Math Boxes 12.8

1. a. Measure the radius of the circle in centimeters. \qquad
b. Find the area to the nearest cm^{2} and the circumference to the nearest cm .

$$
\begin{aligned}
& \text { Area }=\pi * \text { radius }^{2} \\
& \text { Circumference }=\pi * \text { diameter }
\end{aligned}
$$

The area is about \qquad .

The circumference is about \qquad
 .
$\begin{array}{r}\text { SRB } \\ 171178 \\ \hline 18\end{array}$
2. To celebrate her birthday, Ms. Hahn decided to give each of the fifth graders one strand of her favorite kind of licorice whip. There are 179 fifth graders. The whips come 15 strands to a package at a cost of $\$ 1.19$ per package.
a. How many packages of licorice whips does Ms. Hahn need to buy?
\qquad
b. How much will she spend?

3. Complete the table.

Fraction	Decimal	Percent
$\frac{4}{5}$		
		35%
$\frac{8}{20}$		
		87.5%

4. Complete the table below. Then graph the data and connect the points with line segments. Robin runs $\frac{1}{2}$ mile in 4 minutes.
Rule: $\frac{1}{8} *$ number of minutes $=$ total miles

Number of Minutes	Total Miles
4	$\frac{1}{2}$
8	
	$3 \frac{1}{2}$
32	

Robin's Running Speed

The Heart Pump

Your heart is the strongest muscle in your body. It needs to be, because it never rests. Every day of your life, 24 hours a day, your heart pumps blood throughout your body. The blood carries the nutrients and oxygen your body needs to function.

You breathe oxygen into your lungs. The oxygen passes from your lungs into your bloodstream. As your heart pumps blood throughout your body, the oxygen is deposited in the cells of your body and is replaced by waste products (mainly carbon dioxide). The blood carries the carbon dioxide back to your lungs, which get rid of the carbon dioxide as you exhale. The carbon dioxide is replaced by oxygen, and the cycle begins again.

The amount of blood the heart pumps in 1 minute is called the cardiac output. To find your cardiac output, you need to know your heart rate and the average amount of blood your heart pumps with each heartbeat. Cardiac output is calculated as follows:

Cardiac output $=$ amount of blood pumped per heartbeat $*$ heart rate

On average, the heart of a fifth grader pumps about 1.6 fluid ounces of blood with each heartbeat. If your heart beats about 90 times per minute, then your heart pumps about $1.6 * 90$, or 144 fluid ounces of blood per minute. Your cardiac output would be about 144 fluid ounces, or $1 \frac{1}{8}$ gallons of blood per minute. That's about 65 gallons of blood per hour. Imagine having to do this much work, around the clock, every day of your life! Can you see why your heart needs to be very strong?

A person's normal heart rate decreases with age. A newborn's heart rate can be as high as 110 to 160 beats per minute. For 10-year-olds, it is around 90 beats per minute; for adults, it is between 70 and 80 beats per minute. It is not unusual for older people's hearts to beat as few as 50 to 65 times per minute.

Because cardiac output depends on a person's heart rate, it is not the same at all times. The more often the heart beats in 1 minute, the more blood is pumped throughout the body.

Exercise helps your heart grow larger and stronger. The larger and stronger your heart is, the more blood it can pump with each heartbeat. A stronger heart needs fewer heartbeats to pump the same amount of blood. This puts less of a strain on the heart.

The Heart Pump (cont.)

Pretend that your heart has been pumping the same amount of blood all of your life so far-about 65 gallons of blood per hour.

1. a. At that rate, about how many gallons of blood would your heart pump per day?

About \qquad gallons
b. About how many gallons per year? About \qquad gallons
2. At that rate, about how many gallons would it have pumped from the time you were born to your last birthday? About \qquad gallons
3. Both heart rate and cardiac output increase with exercise. Look at the table on journal page 428. Find the number of heartbeats in 15 seconds when you are at rest and the number of heartbeats after 25 step-ups. Record them below.
a. Heartbeats in 15 seconds at rest: \qquad
b. Heartbeats in 15 seconds after 25 step-ups: \qquad

Now figure out how many heartbeats in 1 minute.
c. Heartbeats in 1 minute at rest: \qquad
d. Heartbeats in 1 minute after 25 step-ups: \qquad
4. If your heart pumps about 1.6 fluid ounces of blood per heartbeat, about how much blood does it pump in 1 minute when you are at rest?

About \qquad fl oz
5. A gallon is equal to 128 fluid ounces. About how many gallons of blood does your heart pump in 1 minute when you are at rest?

About \qquad gallon(s)
6. a. Use your answer to Problem 5 above to find about how many fluid ounces of blood your heart would pump in 1 minute after 25 step-ups.

About \qquad fl oz
b. About how many gallons? About \qquad gallon(s)

American Tour: End-of-Year Projects

Work with a partner or in a small group on one or more of the following projects, or think up a project of your own. Each project has four steps.

Step 1 Plan and Do Research. Use the American Tour section of the Student Reference Book and other reference sources such as encyclopedias, almanacs, and the Internet to locate necessary and helpful data. Decide which information to use.

Step 2 Analyze Data. In order to complete the project, you will need to analyze and possibly transform the data you find in your sources.

Step 3 Record and Display Your Findings. Write a journal; make charts, graphs, tables, and other displays to record and show what you have found.

Step 4 Present Your Results. Report your findings to your classmates in clear and interesting ways.

Project 1: "Most" State, "Least" State, My State

Look up a variety of population and environmental statistics in the American Tour and in other sources. Create a display that shows which state has the most or the highest number, which has the least or lowest number, and the number for your state (if it is different). Then write a sentence or two for each comparison that describes how your state compares to the "most" and "least" states.

For example, if you live in Connecticut, you might make a comparison like the one below:

Population in 2000		
Most	California	$32,521,000$ people
Least	Wyoming	525,000 people
My State	Connecticut	$3,284,000$ people

My state's population is about $\frac{1}{10}$ the population of California, but about 6 times the population of Wyoming.

This is just one way you could make the comparison. There are many others.
Find ways to make interesting and informative comparisons.

American Tour: End-of-Year Projects (cont.)

Project 2: Then and Now

The American Tour section of the Student Reference Book contains information about the United States during your lifetime and approximately 100 and 200 years ago. Use some of this information, as well as information from other sources, to create a series of bar graphs that compare the United States of your lifetime to the United States of approximately 100 and 200 years ago. For each graph, write a newspaper headline that describes an interesting pattern or fact shown by the graph.

For example, one of the bar graphs might compare the percent of the population living in urban areas in 1790, 1900, and 2000. It might look like the graph at the right.

Some hints to keep in mind:

- Sometimes there will be no data for approximately 200 years ago. If this is the case, then compare data for approximately 100 years ago with the present.
- The dates do not have to be the same for each bar graph. Just make sure to note on each graph which years you are comparing.
- Clearly label your graphs. Give them titles, and indicate which counts, measures, or percents you are comparing and the years for which you have data.

Project 3: State Almanac

Use the American Tour and other sources to create a State Almanac of interesting facts and features about your state (or another state). You might include the following information:

- the year your state became a state
- the number of Native Americans who lived in your state in 2000
- the number of times greater your state's population was in 2000 than in 1900

Illustrate the State Almanac with graphs, pictures, and other displays that highlight special features of your state.

American Tour: End-of-Year Projects (cont.)

Project 4: A Westward Journey

Use the information in the American Tour section of the Student Reference Book to help you write a journal that describes a trip across the country in 1840.

Begin the trip at a city on the east coast. From there, travel to St. Louis. Make part of this journey by foot, part by horseback, and part by stagecoach.

From St. Louis, take the trail of your choice west. Assume there is a road from St. Louis to Independence along the Missouri River.

Make approximately half of the journey from St. Louis to a city on the west coast by stagecoach and half by wagon train.

Find the number of days each part of the trip will take and the total traveling time from coast to coast.

You will need to make other decisions. How many hours per day could you travel by the various means of transportation? Do you need to rest along the way? Use your imagination.

For travel between cities in the northeast and St. Louis, you can use the highway map on page 346 as a rough guide to distances between cities. For travel west of St. Louis, use the map and scale on page 312.

You might, for example, begin as follows:
June 1 We departed Boston by stagecoach. Our destination was New York.

June 3 We arrived in New York. The journey from Boston took 2 days. The stagecoach traveled about 12 hours a day, covering around 100 miles each day. We were exhausted and so were the horses!

June 4 We left for Pittsburgh via Philadelphia and Lancaster, traveling by horseback.

June 12 The 400-mile horseback journey to Pittsburgh took 8 days. We covered about 65 miles per day, but we could not travel for two days due to driving rainstorms that washed out the road.

Math Boxes 12.9

1. Mark and label each point on the ruler below.
A: $3 \frac{3}{8}{ }^{\text {" }}$
B: $1 \frac{5}{16}{ }^{\prime}$
C: $\frac{15}{16}{ }^{\text {" }}$
D: $4 \frac{5}{8}$ "
$E: 2 \frac{3}{4}{ }^{\text {n }}$

2. Multiply or divide.
a. $1 8 \longdiv { 4 5 7 }$
b. $3 6 \longdiv { 3 , 9 8 2 }$
c. $\quad 75$
d. 824

* 48
* 7

3. Solve.

One banana weighs
as much as \qquad Ps.

One cube weighs as much as __ Ps.

One cube weighs as much as \qquad marbles.

One X weighs
as much as \qquad marbles.

Time to Reflect

1. Describe at least two situations that involve ratios or rates.
\qquad
\qquad
\qquad
\qquad
\qquad
2. Explain what a ratio is.
\qquad
\qquad
\qquad
\qquad
\qquad
3. Describe something from this unit that you think next year's fifth graders might find confusing.
\qquad
\qquad
\qquad
\qquad
\qquad
4. Look back through your journal. List at least one topic in this unit that you think you will find useful. Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad

Math Boxes 12.10

1. a. Draw a circle with a radius of 2.5 centimeters.
b. What is the area of this circle to the nearest centimeter?

$$
\text { Area }=\pi * \text { radius }^{2}
$$

About \qquad
2. Cherie lives on a chicken farm. Every morning she collects the eggs from the hen house. She collected 162 eggs on Monday, 104 eggs on Tuesday, and 157 eggs on Wednesday. She packed them into cartons, each containing 12 eggs. How many egg cartons can she fill completely?
\qquad egg cartons
3. Complete the table.

Fraction	Decimal	Percent
	0.18	
		37.5%
$\frac{45}{50}$		
$\frac{16}{25}$		
	0.88	

4. Complete the table. Then graph the data and connect the points with line segments. David rides his bike at a speed of about 12 miles per hour.
Rule: 12 * number of hours $=$ total miles

Number of Hours	Total Miles
1	12
2	36
	42
5	

Date

Reference

Equivalent Fractions, Decimals, and Percents

$\frac{1}{2}$	$\frac{2}{4}$	$\frac{3}{6}$	$\frac{4}{8}$	$\frac{5}{10}$	$\frac{6}{12}$	$\frac{7}{14}$	$\frac{8}{16}$	$\frac{9}{18}$	$\frac{10}{20}$	$\frac{11}{22}$	$\frac{12}{24}$	$\frac{13}{26}$	$\frac{14}{28}$	$\frac{15}{30}$	0.5	50\%
$\frac{1}{3}$	$\frac{2}{6}$	$\frac{3}{9}$	$\frac{4}{12}$	$\frac{5}{15}$	$\frac{6}{18}$	$\frac{7}{21}$	$\frac{8}{24}$	$\frac{9}{27}$	$\frac{10}{30}$	$\frac{11}{33}$	$\frac{12}{36}$	$\frac{13}{39}$	$\frac{14}{42}$	$\frac{15}{45}$	$0 . \overline{3}$	$33 \frac{1}{3} \%$
$\frac{2}{3}$	$\frac{4}{6}$	$\frac{6}{9}$	$\frac{8}{12}$	$\frac{10}{15}$	$\frac{12}{18}$	$\frac{14}{21}$	$\frac{16}{24}$	$\frac{18}{27}$	$\frac{20}{30}$	$\frac{22}{33}$	$\frac{24}{36}$	$\frac{26}{39}$	$\frac{28}{42}$	$\frac{30}{45}$	$0 . \overline{6}$	$66 \frac{2}{3} \%$
$\frac{1}{4}$	$\frac{2}{8}$	$\frac{3}{12}$	$\frac{4}{16}$	$\frac{5}{20}$	$\frac{6}{24}$	$\frac{7}{28}$	$\frac{8}{32}$	$\frac{9}{36}$	$\frac{10}{40}$	$\frac{11}{44}$	$\frac{12}{48}$	$\frac{13}{52}$	$\frac{14}{56}$	$\frac{15}{60}$	0.25	25\%
$\frac{3}{4}$	$\frac{6}{8}$	$\frac{9}{12}$	$\frac{12}{16}$	$\frac{15}{20}$	$\frac{18}{24}$	$\frac{21}{28}$	$\frac{24}{32}$	$\frac{27}{36}$	$\frac{30}{40}$	$\frac{33}{44}$	$\frac{36}{48}$	$\frac{39}{52}$	$\frac{42}{56}$	$\frac{45}{60}$	0.75	75\%
$\frac{1}{5}$	$\frac{2}{10}$	$\frac{3}{15}$	$\frac{4}{20}$	$\frac{5}{25}$	$\frac{6}{30}$	$\frac{7}{35}$	$\frac{8}{40}$	$\frac{9}{45}$	$\frac{10}{50}$	$\frac{11}{55}$	$\frac{12}{60}$	$\frac{13}{65}$	$\frac{14}{70}$	$\frac{15}{75}$	0.2	20\%
$\frac{2}{5}$	$\frac{4}{10}$	$\frac{6}{15}$	$\frac{8}{20}$	$\frac{10}{25}$	$\frac{12}{30}$	$\frac{14}{35}$	$\frac{16}{40}$	$\frac{18}{45}$	$\frac{20}{50}$	$\frac{22}{55}$	$\frac{24}{60}$	$\frac{26}{65}$	$\frac{28}{70}$	$\frac{30}{75}$	0.4	40\%
$\frac{3}{5}$	$\frac{6}{10}$	$\frac{9}{15}$	$\frac{12}{20}$	$\frac{15}{25}$	$\frac{18}{30}$	$\frac{21}{35}$	$\frac{24}{40}$	$\frac{27}{45}$	$\frac{30}{50}$	$\frac{33}{55}$	$\frac{36}{60}$	$\frac{39}{65}$	$\frac{42}{70}$	$\frac{45}{75}$	0.6	60\%
$\frac{4}{5}$	$\frac{8}{10}$	$\frac{12}{15}$	$\frac{16}{20}$	$\frac{20}{25}$	$\frac{24}{30}$	$\frac{28}{35}$	$\frac{32}{40}$	$\frac{36}{45}$	$\frac{40}{50}$	$\frac{44}{55}$	$\frac{48}{60}$	$\frac{52}{65}$	$\frac{56}{70}$	$\frac{60}{75}$	0.8	80\%
$\frac{1}{6}$	$\frac{2}{12}$	$\frac{3}{18}$	$\frac{4}{24}$	$\frac{5}{30}$	$\frac{6}{36}$	$\frac{7}{42}$	$\frac{8}{48}$	$\frac{9}{54}$	$\frac{10}{60}$	$\frac{11}{66}$	$\frac{12}{72}$	$\frac{13}{78}$	$\frac{14}{84}$	$\frac{15}{90}$	$0.1 \overline{6}$	$16 \frac{2}{3} \%$
$\frac{5}{6}$	$\frac{10}{12}$	$\frac{15}{18}$	$\frac{20}{24}$	$\frac{25}{30}$	$\frac{30}{36}$	$\frac{35}{42}$	$\frac{40}{48}$	$\frac{45}{54}$	$\frac{50}{60}$	$\frac{55}{66}$	$\frac{60}{72}$	$\frac{65}{78}$	$\frac{70}{84}$	$\frac{75}{90}$	$0.8 \overline{3}$	$83 \frac{1}{3} \%$
$\frac{1}{7}$	$\frac{2}{14}$	$\frac{3}{21}$	$\frac{4}{28}$	$\frac{5}{35}$	$\frac{6}{42}$	$\frac{7}{49}$	$\frac{8}{56}$	$\frac{9}{63}$	$\frac{10}{70}$	$\frac{11}{77}$	$\frac{12}{84}$	$\frac{13}{91}$	$\frac{14}{98}$	$\frac{15}{105}$	0.143	14.3\%
$\frac{2}{7}$	$\frac{4}{14}$	$\frac{6}{21}$	$\frac{8}{28}$	$\frac{10}{35}$	$\frac{12}{42}$	$\frac{14}{49}$	$\frac{16}{56}$	$\frac{18}{63}$	$\frac{20}{70}$	$\frac{22}{77}$	$\frac{24}{84}$	$\frac{26}{91}$	$\frac{28}{98}$	$\frac{30}{105}$	0.286	28.6\%
$\frac{3}{7}$	$\frac{6}{14}$	$\frac{9}{21}$	$\frac{12}{28}$	$\frac{15}{35}$	$\frac{18}{42}$	$\frac{21}{49}$	$\frac{24}{56}$	$\frac{27}{63}$	$\frac{30}{70}$	$\frac{33}{77}$	$\frac{36}{84}$	$\frac{39}{91}$	$\frac{42}{98}$	$\frac{45}{105}$	0.429	42.9\%
$\frac{4}{7}$	$\frac{8}{14}$	$\frac{12}{21}$	$\frac{16}{28}$	$\frac{20}{35}$	$\frac{24}{42}$	$\frac{28}{49}$	$\frac{32}{56}$	$\frac{36}{63}$	$\frac{40}{70}$	$\frac{44}{77}$	$\frac{48}{84}$	$\frac{52}{91}$	$\frac{56}{98}$	$\frac{60}{105}$	0.571	57.1%
$\frac{5}{7}$	$\frac{10}{14}$	$\frac{15}{21}$	$\frac{20}{28}$	$\frac{25}{35}$	$\frac{30}{42}$	$\frac{35}{49}$	$\frac{40}{56}$	$\frac{45}{63}$	$\frac{50}{70}$	55	$\frac{60}{84}$	$\frac{65}{91}$	$\frac{70}{98}$	$\frac{75}{105}$	0.714	71.4%
$\frac{6}{7}$	$\frac{12}{14}$	$\frac{18}{21}$	$\frac{24}{28}$	$\frac{30}{35}$	$\frac{36}{42}$	$\frac{42}{49}$	$\frac{48}{56}$	$\frac{54}{63}$	$\frac{60}{70}$	$\frac{66}{77}$	$\frac{72}{84}$	$\frac{78}{91}$	$\frac{84}{98}$	$\frac{90}{105}$	0.857	85.7\%
$\frac{1}{8}$	$\frac{2}{16}$	$\frac{3}{24}$	$\frac{4}{32}$	$\frac{5}{40}$	$\frac{6}{48}$	$\frac{7}{56}$	$\frac{8}{64}$	$\frac{9}{72}$	$\frac{10}{80}$	$\frac{11}{88}$	$\frac{12}{96}$	$\frac{13}{104}$	$\frac{14}{112}$	$\frac{15}{120}$	0.125	$12 \frac{1}{2} \%$
$\frac{3}{8}$	$\frac{6}{16}$	$\frac{9}{24}$	$\frac{12}{32}$	$\frac{15}{40}$	$\frac{18}{48}$	$\frac{21}{56}$	$\frac{24}{64}$	$\frac{27}{72}$	$\frac{30}{80}$	$\frac{33}{88}$	$\frac{36}{96}$	$\frac{39}{104}$	$\frac{42}{112}$	$\frac{45}{120}$	0.375	$37 \frac{1}{2} \%$
$\frac{5}{8}$	$\frac{10}{16}$	$\frac{15}{24}$	$\frac{20}{32}$	$\frac{25}{40}$	$\frac{30}{48}$	$\frac{35}{56}$	$\frac{40}{64}$	$\frac{45}{72}$	$\frac{50}{80}$	$\frac{55}{88}$	$\frac{60}{96}$	$\frac{65}{104}$	$\frac{70}{112}$	$\frac{75}{120}$	0.625	$62 \frac{1}{2} \%$
$\frac{7}{8}$	$\frac{14}{16}$	$\frac{21}{24}$	$\frac{28}{32}$	$\frac{35}{40}$	$\frac{42}{48}$	$\frac{49}{56}$	$\frac{56}{64}$	$\frac{63}{72}$	$\frac{70}{80}$	$\frac{77}{88}$	$\frac{84}{96}$	$\frac{91}{104}$	$\frac{98}{112}$	$\frac{105}{120}$	0.875	$87 \frac{1}{2} \%$
$\frac{1}{9}$	$\frac{2}{18}$	$\frac{3}{27}$	$\frac{4}{36}$	$\frac{5}{45}$	$\frac{6}{54}$	$\frac{7}{63}$	$\frac{8}{72}$	$\frac{9}{81}$	$\frac{10}{90}$	$\frac{11}{99}$	$\frac{12}{108}$	$\frac{13}{117}$	$\frac{14}{126}$	$\frac{15}{135}$	0.1	$11 \frac{1}{9} \%$
$\frac{2}{9}$	$\frac{4}{18}$	$\frac{6}{27}$	$\frac{8}{36}$	$\frac{10}{45}$	$\frac{12}{54}$	$\frac{14}{63}$	$\frac{16}{72}$	$\frac{18}{81}$	$\frac{20}{90}$	$\frac{22}{99}$	$\frac{24}{108}$	$\frac{26}{117}$	$\frac{28}{126}$	$\frac{30}{135}$	$0 . \overline{2}$	$22 \frac{2}{9} \%$
$\frac{4}{9}$	$\frac{8}{18}$	$\frac{12}{27}$	$\frac{16}{36}$	$\frac{20}{45}$	$\frac{24}{54}$	$\frac{28}{63}$	$\frac{32}{72}$	$\frac{36}{81}$	$\frac{40}{90}$	$\frac{44}{99}$	$\frac{48}{108}$	$\frac{52}{117}$	$\frac{56}{126}$	$\frac{60}{135}$	$0 . \overline{4}$	$44 \frac{4}{9} \%$
$\frac{5}{9}$	$\frac{10}{18}$	$\frac{15}{27}$	$\frac{20}{36}$	$\frac{25}{45}$	$\frac{30}{54}$	$\frac{35}{63}$	40	$\frac{45}{81}$	$\frac{50}{90}$	$\frac{55}{99}$	$\frac{60}{108}$	$\frac{65}{117}$	$\frac{70}{126}$	$\frac{75}{135}$	$0 . \overline{5}$	$55 \frac{5}{9} \%$
$\frac{7}{9}$	$\frac{14}{18}$	$\frac{21}{27}$	$\frac{28}{36}$	$\frac{35}{45}$	$\frac{42}{54}$	$\frac{49}{63}$	$\frac{56}{72}$	$\frac{63}{81}$	$\frac{70}{90}$	$\frac{77}{99}$	$\frac{84}{108}$	$\frac{91}{117}$	$\frac{98}{126}$	$\frac{105}{135}$	$0 . \overline{7}$	$77 \frac{7}{9} \%$
$\frac{8}{9}$	$\frac{16}{18}$	$\frac{24}{27}$	$\frac{32}{36}$	$\frac{40}{45}$	$\frac{48}{54}$	$\frac{56}{63}$	$\frac{64}{72}$	$\frac{72}{81}$	$\frac{80}{90}$	$\frac{88}{99}$	$\frac{96}{108}$	$\frac{104}{117}$	$\frac{112}{126}$	$\frac{120}{135}$	$0 . \overline{8}$	$88 \frac{8}{9} \%$

Note: The decimals for sevenths have been rounded to the nearest thousandth.

Reference

Metric System

Units of Time

```
1 century = 100 years
1 decade = }10\mathrm{ years
1 year (yr) = 12 months
    = 52 weeks (plus one or two days)
    = 365 days (366 days in a leap year)
1 month (mo) = 28,29,30, or 31 days
1 week (wk) = 7 days
1 day (d) = 24 hours
1 hour (hr) = 60 minutes
1 minute (min) = 60 seconds (sec)
```


U.S. Customary System

Units of Length

1 mile (mi)	$=1760$ yards (yd)
	$=5280$ feet (ft)
1 yard	$=3$ feet
	$=36$ inches (in.)
1 foot	$=12$ inches

Units of Area

1 square yard $\left(\mathrm{yd}^{2}\right)=9$ square feet $\left(\mathrm{ft}^{2}\right)$

$$
=1296 \text { square inches }\left(\text { in. }{ }^{2}\right)
$$

1 square foot $=144$ square inches
1 acre $=43,560$ square feet
1 square mile $\left(\mathrm{mi}^{2}\right)=640$ acres

Units of Volume

1 cubic yard $\left(\mathrm{yd}^{3}\right)=27$ cubic feet $\left(\mathrm{ft}^{3}\right)$
1 cubic foot $=1728$ cubic inches (in. ${ }^{3}$)
Units of Capacity

1 gallon (gal)	$=4$ quarts (qt)
1 quart	$=2$ pints (pt)
1 pint	$=2$ cups (c)
1 cup	$=8$ fluid ounces (fl oz)
1 fluid ounce	$=2$ tablespoons (tbs)
1 tablespoon	$=3$ teaspoons (tsp)

Units of Weight

1 ton (T)	$=2000$ pounds (lb)
1 pound	$=16$ ounces (oz)

System Equivalents

1 inch is about 2.5 cm (2.54)
1 kilometer is about 0.6 mile (0.621)
1 mile is about 1.6 kilometers (1.609)
1 meter is about 39 inches (39.37)
1 liter is about 1.1 quarts (1.057)
1 ounce is about 28 grams (28.350)
1 kilogram is about 2.2 pounds (2.205)
1 hectare is about 2.5 acres (2.47)

Rules for Order of Operations

1. Do operations within parentheses or other grouping symbols before doing anything else.
2. Calculate all powers.
3. Do multiplications or divisions in order, from left to right.
4. Then do additions or subtractions in order, from left to right.

Reference

Symbols

+	plus or positive
-	minus or negative
*, \times	multiplied by
\div, /	divided by
$=$	is equal to
\#	is not equal to
<	is less than
>	is greater than
\leq	is less than or
\geq	is greater than or equal to
x^{n}	nth power of x
\sqrt{x}	square root of x
\%	percent
$a: b, a / b, \frac{a}{b}$	ratio of a to b
	or a divided by b or the fraction $\frac{a}{b}$
-	degree
(a, b)	ordered pair
$\overleftrightarrow{A S}$	line $A S$
$\overline{A S}$	line segment $A S$
$\overrightarrow{A S}$	ray AS
\square	right angle
\perp	is perpendicular to
11	is parallel to
$\triangle A B C$	triangle $A B C$
$\angle A B C$	angle $A B C$
$\angle B$	angle B

Date

Reference

Latitude and Longitude

Point A is located at $30^{\circ} \mathrm{N}$ latitude and $30^{\circ} \mathrm{E}$ longitude.

Fraction-Stick and Decimal Number-Line Chart

Reference

THIS BOOK IS THE PROPERTY OF:

PUPILS to whom this textbook is issued must not write on any page or mark any part of it in any way, consumable textbooks excepted.

1. Teachers should see that the pupil's name is clearly written in ink in every book issued.
2. The following terms should be used in recording the condition of the book: New; Good; Fair; Poor; Bad.

"Easy" Fractions	Decimals	Percents
$\frac{1}{2}$	0.50	50%
$\frac{1}{4}$	0.25	25%
$\frac{3}{4}$	0.75	75%
$\frac{1}{5}$	0.20	20%
$\frac{2}{5}$	0.40	40%
$\frac{3}{5}$	0.60	60%
$\frac{4}{5}$	0.80	80%
$\frac{1}{10}$	0.10	10%
$\frac{3}{10}$	0.30	30%
$\frac{7}{10}$	0.70	70%
$\frac{9}{10}$	0.90	90%

Multiplication/Division Facts Table

$* / /$	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Prefixes

tri-three quad-four penta- . . .five hexa-six hepta- . . .seven octa-eight	nona-nine deca-ten dodeca- . .twelve giga-billion mega-million kilo-thousand	hecto- . . .hundred deci-tenth centi-hundredth milli-thousandth micro- . . .millionth nano-billionth

Place-Value Chart

millions	hundred- thousands	ten- thousands	thousands	hundreds	tens	ones	.	tenths	hundredths
thousandths									
$1,000,000 \mathrm{~s}$	$100,000 \mathrm{~s}$	$10,000 \mathrm{~s}$	1000 s	100 s	10 s	1 s	.	0.1 s	0.01 s
10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}	.001 s		

Reference

Metric System

Units of Length	
1 kilometer (km)	$=1000$ meters (m)
1 meter	$=10$ decimeters (dm)
	$=100$ centimeters (cm)
	$=1000$ millimeters (mm)
1 decimeter	$=10$ centimeters
1 centimeter	$=10$ millimeters
Units of Area	
1 square meter (m^{2})	$\begin{aligned} = & 100 \text { square decimeters }\left(\mathrm{dm}^{2}\right) \\ = & 10,000 \text { square } \\ & \text { centimeters }\left(\mathrm{cm}^{2}\right) \end{aligned}$
1 square decimeter	$=100$ square centimeters
1 are (a)	$=100$ square meters
1 hectare (ha)	$=100$ ares
1 square kilometer (km^{2})	$=100$ hectares
Units of Volume	
1 cubic meter (m^{3})	$\begin{aligned} = & 1000 \text { cubic decimeters }\left(\mathrm{dm}^{3}\right) \\ = & 1,000,000 \text { cubic } \\ & \text { centimeters }\left(\mathrm{cm}^{3}\right) \end{aligned}$
1 cubic decimeter	$=1000$ cubic centimeters
Units of Capacity	
1 kiloliter (kL)	$=1000$ liters (L)
1 liter	$=1000$ milliliters (mL)
Units of Mass	
1 metric ton (t)	$=1000$ kilograms (kg)
1 kilogram	$=1000$ grams (g)
1 gram	$=1000$ milligrams (mg)

Units of Time

1 century	$=100$ years
1 decade	$=10$ years
1 year (yr)	$=12$ months
	$=52$ weeks (plus one or two days)
	$=365$ days (366 days in a leap year)
1 month (mo)	$=28,29,30$, or 31 days
1 week (wk)	$=7$ days
1 day (d)	$=24$ hours
1 hour (hr)	$=60$ minutes
1 minute (\min)	$=60$ seconds (sec)

System Equivalents

1 inch is about 2.5 cm (2.54)
1 kilometer is about 0.6 mile (0.621)
1 mile is about 1.6 kilometers (1.609)
1 meter is about 39 inches (39.37)
1 liter is about 1.1 quarts (1.057)
1 ounce is about 28 grams (28.350)
1 kilogram is about 2.2 pounds (2.205)
1 hectare is about 2.5 acres (2.47)

U.S. Customary System

Units of Length

1 mile (mi)	$=1760$ yards (yd)
	$=5280$ feet (ft)
1 yard	$=3$ feet
	$=36$ inches (in.)
1 foot	$=12$ inches

Units of Area

1 square yard $\left(\mathrm{yd}^{2}\right)$	$=9$ square feet $\left(\mathrm{ft}^{2}\right)$
	$=1296$ square inches $\left(\mathrm{in} .^{2}\right)$
1 square foot	$=144$ square inches
1 acre	$=43,560$ square feet
1 square mile $\left(\mathrm{mi}^{2}\right)$	$=640$ acres

Units of Volume

1 cubic yard $\left(\mathrm{yd}^{3}\right)=27$ cubic feet $\left(\mathrm{ft}^{3}\right)$
1 cubic foot $\quad=1728$ cubic inches (in. ${ }^{3}$)

Units of Capacity

1 gallon (gal)	$=4$ quarts (qt)
1 quart	$=2$ pints (pt)
1 pint	$=2$ cups (c)
1 cup	$=8$ fluid ounces (fl oz)
1 fluid ounce	$=2$ tablespoons (tbs)
1 tablespoon	$=3$ teaspoons (tsp)

Units of Weight

$\begin{array}{ll}1 \text { ton }(\mathrm{T}) & =2000 \text { pounds }(\mathrm{lb}) \\ 1 \text { pound } & =16 \text { ounces }(o z)\end{array}$

Point A is located at $30^{\circ} \mathrm{N}$ latitude and $30^{\circ} \mathrm{E}$ longitude.

Polygon Capture Property Cards (Front)

There is only one right angle.	There are one or more right angles.	All angles are right angles.	There are no right angles.
There is at least one acute angle.	At least one angle is more than 90°.	All angles are right angles.	There are no right angles.
All opposite sides are parallel.	Only one pair of sides is parallel.	There are no parallel sides.	All sides are the same length.
All opposite			
sides are			
parallel.	Some sides have the same length.	All opposite sides have the same length.	Wild Card: Pick your own side property.

Angles	Angles	Angles	Angles
Angles	Angles	Angles	Angles
Sides	Sides	Sides	Sides
Sides	Sides	Sides	Sides

\qquad

Date
Time

Slide Rule

Assembly Instructions

1. Cut along the solid lines.
2. Score and fold along the dashed line of the holder so that the number lines are on the outside.

Use with Lesson 6.8.

Integer Slider

Rectangular Prism Patterns

Square Tiles

